scispace - formally typeset
Search or ask a question
Topic

Solar cell

About: Solar cell is a research topic. Over the lifetime, 67668 publications have been published within this topic receiving 1243789 citations. The topic is also known as: photovoltaic cell.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Abstract: Quantum dot (QD) solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents. The former effect is based on miniband transport and collection of hot carriers in QD array photoelectrodes before they relax to the band edges through phonon emission. The latter effect is based on utilizing hot carriers in QD solar cells to generate and collect additional electron–hole pairs through enhanced impact ionization processes. Three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2 , and (3) QDs dispersed in a blend of electron- and hole-conducting polymers. These high-efficiency configurations require slow hot carrier cooling times, and we discuss initial results on slowed hot electron cooling in InP QDs.

2,405 citations

Journal ArticleDOI
TL;DR: In this article, the current understanding of stability/degradation in organic and polymer solar cell devices is presented and the methods for studying and elucidating degradation are discussed Methods for enhancing the stability through the choice of better active materials, encapsulation, application of getter materials and UV-filters are also discussed

2,284 citations

Journal ArticleDOI
TL;DR: This work identifies an anomalous hysteresis in the current-voltage curves of perovskite solar cells, hypothesizes three possible origins of the effect, and discusses its implications on device efficiency and future research directions.
Abstract: Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current–voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

2,205 citations

Journal ArticleDOI
TL;DR: The dye-sensitized solar cell (DSC) as mentioned in this paper provides a technically and economically credible alternative concept to present day p-n junction photovoltaic devices, where light is absorbed by a sensitizer, which is anchored to the surface of a wide band gap oxide semiconductor.
Abstract: The dye-sensitized solar cell (DSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional silicon systems, where the semiconductor assumes both the task of light absorption and charge carrier transport the two functions are separated here. Light is absorbed by a sensitizer, which is anchored to the surface of a wide band gap oxide semiconductor. Charge separation takes place at the interface via photo-induced electron injection from the dye into the conduction band of the solid. Carriers are transported in the conduction band of the semiconductor to the charge collector. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrystalline morphology permits to harvest a large fraction of sunlight. Nearly quantitative conversion of incident photon into electric current is achieved over a large spectral range extending from the UV to the near IR region. Overall solar (standard AM 1.5) to current conversion efficiencies of 10.6% have been reached. New electrolytes based on ionic liquids have been developed that show excellent stability both under prolonged light soaking and high temperature stress. There are good prospects to produce these cells at lower cost than conventional devices. Here we present the current state of the field, and discuss the importance of mastering the interface of the mesoporous films by assisting the self-assembly of the sensitizer at the surface of the oxide nanocrystals.

2,148 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed description of the preparation, structural characterisation and physical characteristics of hybrid organic-inorganic perovskite (CH3NH3)PbI3 is presented.
Abstract: The hybrid organic–inorganic perovskite (CH3NH3)PbI3 may find application in next generation solid-state sensitised solar cells. Although this material and related perovskites were discovered many decades ago, questions remain concerning their diverse structural chemistry and unusual properties. The article presents a review of previous work and provides a detailed description of the preparation, structural characterisation and physical characteristics of (CH3NH3)PbI3. The phase changes exhibited by (CH3NH3)PbI3 have been probed using variable temperature powder and single crystal X-ray diffraction, combined with differential scanning calorimetry, thermogravimetric analysis and phase contrast transmission electron microscopy. The optical band gap for (CH3NH3)PbI3 determined by UV-Visible spectroscopy was compared to values obtained from density-of-state simulation of the electronic band structure.

2,132 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
89% related
Silicon
196K papers, 3M citations
88% related
Band gap
86.8K papers, 2.2M citations
88% related
Oxide
213.4K papers, 3.6M citations
83% related
Amorphous solid
117K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,130
20222,493
20212,051
20202,937
20193,421
20183,878