scispace - formally typeset

Topic

Solar constant

About: Solar constant is a(n) research topic. Over the lifetime, 967 publication(s) have been published within this topic receiving 29647 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: Conventional estimates of efficiency in terms of the amount of solar radiation incident at the earth's surface provide ecologists and agronomists with a method for comparing plant productivity under different systems of land use and management and in different * Opening paper read at IBP/UNESCO Meeting on Productivity of Tropical Ecosystems.
Abstract: In thermodynamic terms, ecosystems are machines supplied with energy from an external source, usually the sun. When the input of energy to an ecosystem is exactly equal to its total output of energy, the state of equilibrium which exists is a special case of the First Law of Thermodynamics. The Second Law is relevant too. It implies that in every spontaneous process, physical or chemical, the production of 'useful' energy, which could be harnessed in a form such as mechanical work, must be accompanied by a simultaneous 'waste' of heat. No biological system can break or evade this law. The heat produced by a respiring cell is an inescapable component of cellular metabolism, the cost which Nature has to pay for creating biological order out of physical chaos in the environment of plants and animals. Dividing the useful energy of a thermodynamic process by the total energy involved gives a figure for the efficiency of the process, and this procedure has been widely used to analyse the flow of energy in ecosystems. For example, the efficiency with which a stand of plants produces dry matter by photosynthesis can be defined as the ratio of chemical energy stored in the assimilates to radiant energy absorbed by foliage during the period of assimilation. The choice of absorbed energy as a base for calculating efficiency is convenient but arbitrary. To derive an efficiency depending on the environment of a particular site as well as oil the nature of the vegetation, dry matter production can be related to the receipt of solar energy at the top of the earth's atmosphere. This exercise was attempted by Professor William Thomson, later Lord Kelvin, in 1852. 'The author estimates the mechanical value of the solar heat which, were none of it absorbed by the atmosphere, would fall annually on each square foot of land, at 530 000 000 foot pounds; and infers that probably a good deal more, 1/1000 of the solar heat, which actually falls on growing plants, is converted into mechanical effect.' Outside the earth's atmosphere, a surface kept at right angles to the sun's rays receives energy at a mean rate of 1360 W m-2 or 1f36 kJ m-2 s-1, a figure known as the solar constant. As the energy stored by plants is about 17 kJ per gram of dry matter, the solar constant is equivalent to the production of dry matter at a rate of about 1 g m-2 every 12 s, 7 kg m-2 per day, or 2 6 t m-2 year-'. The annual yield of agricultural crops ranges from a maximum of 30-60 t ha-' in field experiments to less than I t ha-' in some forms of subsistence farming. When these rates are expressed as a fraction of the integrated solar constant, the efficiencies of agricultural systems lie between 0-2 and 0 004%, a range including Kelvin's estimate of 0-1%. Conventional estimates of efficiency in terms of the amount of solar radiation incident at the earth's surface provide ecologists and agronomists with a method for comparing plant productivity under different systems of land use and management and in different * Opening paper read at IBP/UNESCO Meeting on Productivity of Tropical Ecosystems, Makerere University, Uganda, September 1970.

2,032 citations

Journal ArticleDOI
Abstract: A relatively simple numerical model of the energy balance of the earth-atmosphere is set up and applied. The dependent variable is the average annual sea level temperature in 10° latitude belts. This is expressed basically as a function of the solar constant, the planetary albedo, the transparency of the atmosphere to infrared radiation, and the turbulent exchange coefficients for the atmosphere and the oceans. The major conclusions of the analysis are that removing the arctic ice cap would increase annual average polar temperatures by no more than 7C, that a decrease of the solar constant by 2–5% might be sufficient to initiate another ice age, and that man's increasing industrial activities may eventually lead to a global climate much warmer than today.

928 citations

Journal ArticleDOI
Abstract: [1] The most accurate value of total solar irradiance during the 2008 solar minimum period is 1360.8 ± 0.5 W m−2 according to measurements from the Total Irradiance Monitor (TIM) on NASA's Solar Radiation and Climate Experiment (SORCE) and a series of new radiometric laboratory tests. This value is significantly lower than the canonical value of 1365.4 ± 1.3 W m−2 established in the 1990s, which energy balance calculations and climate models currently use. Scattered light is a primary cause of the higher irradiance values measured by the earlier generation of solar radiometers in which the precision aperture defining the measured solar beam is located behind a larger, view-limiting aperture. In the TIM, the opposite order of these apertures precludes this spurious signal by limiting the light entering the instrument. We assess the accuracy and stability of irradiance measurements made since 1978 and the implications of instrument uncertainties and instabilities for climate research in comparison with the new TIM data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variations it detects with stability comparable or superior to prior measurements; instead, its significance is in advancing the capability of monitoring solar irradiance variations on climate-relevant time scales and in improving estimates of Earth energy balance, which the Sun initiates.

730 citations

Journal ArticleDOI
Abstract: Using the most recent composite time series of total solar irradiance spaceborne measurements, a solar constant value of 1366.1 W m−2 is confirmed, and simple quadratic expressions are proposed to predict its daily value from the Zurich sunspot number, the MgII index, or the 10.7 cm radio flux index. Whenever these three indices are available on a daily basis (since 1978), it is possible to predict the sun’s irradiance within 0.1% on average, as accurately as current measurements. Based on this value of the solar constant, an improved approximation of the extraterrestrial solar spectrum from 0 to 1000 μm is proposed. It is obtained by dividing the spectrum into nine bands and selecting representative (and recent) spectra, as well as appropriate scaling coefficients for each band. Comparisons with frequently used spectra are discussed, confirming previous findings of the literature. This synthetic and composite spectrum is proposed at 0.5-nm intervals in the UV (280–400 nm), 1-nm intervals between 0–280 and 400–1705 nm, 5-nm intervals between 1705 and 4000 nm, and progressively larger intervals beyond 4 μm, for a total of 2460 wavelengths.

726 citations

Journal ArticleDOI
TL;DR: The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter-photodiode detectors and the automated rotatingshadow-band technique to make spectrally resolved measurements at seven wavelength passbands of direct-normal, total-hor horizontal, and diffuse-horizontal spectral irradiances.
Abstract: The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter-photodiode detectors and the automated rotating shadow-band technique to make spectrally resolved measurements at seven wavelength passbands (chosen at the time of manufacture between 350 nm and 1.7 µm) of direct-normal, total-horizontal, and diffuse-horizontal irradiances. This instrument achieves an accuracy in direct-normal spectral irradiance comparable with that of tracking radiometers, and it is more accurate than conventional instruments for the determination of the diffuse and total-horizontal spectral irradiances because the angular acceptance function of the instrument closely approximates the ideal cosine response, and because the measured direct-normal component can be corrected for the remaining angular acceptance error. The three irradiance components are measured with the same detector for a given wavelength. Together with the automated shadow-band technique, this guarantees hat the calibration coefficients are identical for each, thus reducing errors when one compares them (as opposed to measurements made with independent instruments). One can use the direct-normal component observations for Langley analysis to obtain depths and to provide an ongoing calibration against the solar constant by extrapolation to zero air mass. Thus the long-term stability of all three measured components can be tied to the solar constant by an analysis of the routinely collected data.

480 citations

Network Information
Related Topics (5)
Convection

39.6K papers, 916.8K citations

79% related
Climate model

22.2K papers, 1.1M citations

79% related
Sea surface temperature

21.2K papers, 874.7K citations

78% related
Radiative transfer

43.2K papers, 1.1M citations

76% related
Ice sheet

16.6K papers, 781.2K citations

73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20219
20202
201911
201810
201718
201614