Topic
Solar eclipse
About: Solar eclipse is a(n) research topic. Over the lifetime, 2737 publication(s) have been published within this topic receiving 22625 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors propose a model for the origin of the slow solar wind at the Sun that maps to a web of separatrices and quasi-separatrix layers in the heliosphere.
Abstract: Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to approximately 60 degrees, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far front the heliospheric current sheet. We then use an MHD code and MIDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model.
255 citations
218 citations
01 Jan 2013
TL;DR: In this paper, the authors discuss the problem in the Nineteenth Century, the Twenty-First Century, and the Twentieth Century, with a focus on the problem of globalization.
Abstract: This chapter contains sections titled: The Problem, The Nineteenth Century, The Twentieth Century, Conclusion
175 citations
TL;DR: In this article, the authors revisited all existing evidence and datasets, both direct and indirect, to assess the level of solar activity during the Maunder minimum, and concluded that solar activity was indeed at an exceptionally low level during this period.
Abstract: Aims. Although the time of the Maunder minimum (1645–1715) is widely known as a period of extremely low solar activity, it is still being debated whether solar activity during that period might have been moderate or even higher than the current solar cycle #24. We have revisited all existing evidence and datasets, both direct and indirect, to assess the level of solar activity during the Maunder minimum. Methods. We discuss the East Asian naked-eye sunspot observations, the telescopic solar observations, the fraction of sunspot active days, the latitudinal extent of sunspot positions, auroral sightings at high latitudes, cosmogenic radionuclide data as well as solar eclipse observations for that period. We also consider peculiar features of the Sun (very strong hemispheric asymmetry of the sunspot location, unusual differential rotation and the lack of the K-corona) that imply a special mode of solar activity during the Maunder minimum. Results. The level of solar activity during the Maunder minimum is reassessed on the basis of all available datasets. Conclusions. We conclude that solar activity was indeed at an exceptionally low level during the Maunder minimum. Although the exact level is still unclear, it was definitely lower than during the Dalton minimum of around 1800 and significantly below that of the current solar cycle #24. Claims of a moderate-to-high level of solar activity during the Maunder minimum are rejected with a high confidence level.
170 citations
TL;DR: For example, the authors found that almost half of the students indicated that the cause of the day-night cycle is the Earth spinning on its axis; most students chose as their best account for changes in the Moon's phases the Moon moving around the Earth.
Abstract: Junior high school students' astronomy conceptions were analysed by means of a written questionnaire presented to them during the beginning of the first semester. The main findings were as follows: almost half of the students indicated that the cause of the day-night cycle is the Earth spinning on its axis; most students chose as their best account for changes in the Moon's phases the Moon moving around the Earth. Despite that, most students thought that the Moon must be in its Full phase for there to be a total solar eclipse; most students underestimated the distances in the Universe and overestimated the Earth's diameter. A great proportion of students indicated that the reason for the different seasons is the tilt of the Earth's axis relative to the plane of its orbit as it revolves around the Sun. But almost the same number of students chose the varying distance between Sun and Earth or between the Earth, Moon and Sun, as a reason for the seasons. Only a third of the students answered correctly that i...
148 citations