scispace - formally typeset
Search or ask a question
Topic

Solar inverter

About: Solar inverter is a research topic. Over the lifetime, 540 publications have been published within this topic receiving 5614 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method to determine inverter-grid system stability using only the inverter output impedance and the grid impedance is developed, which can be applied to all current-source systems.
Abstract: Grid-connected inverters are known to become unstable when the grid impedance is high. Existing approaches to analyzing such instability are based on inverter control models that account for the grid impedance and the coupling with other grid-connected inverters. A new method to determine inverter-grid system stability using only the inverter output impedance and the grid impedance is developed in this paper. It will be shown that a grid-connected inverter will remain stable if the ratio between the grid impedance and the inverter output impedance satisfies the Nyquist stability criterion. This new impedance-based stability criterion is a generalization to the existing stability criterion for voltage-source systems, and can be applied to all current-source systems. A single-phase solar inverter is studied to demonstrate the application of the proposed method.

1,766 citations

Journal ArticleDOI
TL;DR: Underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and introduces a new reactive power control method that is based on sensitivity analysis that combines two droop functions that are inherited from the standard cos φ(P) and Q(U) strategies.
Abstract: The main objective of this study is to increase the penetration level of photovoltaic (PV) power production in low-voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid overvoltage condition, the proposed method combines two droop functions that are inherited from the standard cos φ(P) and Q(U) strategies. Its performance comparison in terms of grid losses and voltage variation with different reactive power strategies is provided by modeling and simulating a real suburban LV network.

468 citations

Journal ArticleDOI
TL;DR: A novel DC-AC converter for applications in the area of distributed energy generation systems, e.g., solar power systems, fuel-cell power systems in combination with supercapacitor or battery energy storage, using an isolated multicell topology is presented.
Abstract: This paper presents a novel DC-AC converter for applications in the area of distributed energy generation systems, e.g., solar power systems, fuel-cell power systems in combination with supercapacitor or battery energy storage. The proposed converter is realized using an isolated multicell topology where the total AC output of the system is formed by series connection of several full-bridge converter stages. The DC links of the full bridges are supplied by individual DC-DC isolation stages which are arranged in parallel concerning the dc input of the. total system. Therefore, all switching cells of the proposed converter can be equipped with modern low-voltage high-current power MOSFETs, which results in an improved efficiency as compared to conventional isolated DC-AC converters. Furthermore, the cells are operated in an interleaved pulsewidth-modulation mode which, in connection with the low voltage level of each cell, significantly reduces the filtering effort on the AC output of the overall system. The paper describes the operating principle, analyzes the fundamental relationships which are relevant for component selection, and presents a specific circuit design. Finally, measurements taken from a 2-kW laboratory model are presented.

231 citations

Journal ArticleDOI
TL;DR: In this article, an artificial neural network (ANN) vector control strategy for an LCL-filter based single-phase solar inverter is developed to maximize the power output from the PV array while ensuring overall system performance, safety, reliability, and controllability for interface with the electricity grid.
Abstract: Residential solar photovoltaic (PV) energy is becoming an increasingly important part of the world's renewable energy. A residential solar PV array is usually connected to the distribution grid through a single-phase inverter. Control of the single-phase PV system should maximize the power output from the PV array while ensuring overall system performance, safety, reliability, and controllability for interface with the electricity grid. This paper has two main objectives. The first objective is to develop an artificial neural network (ANN) vector control strategy for an LCL -filter based single-phase solar inverter. The ANN controller is trained to implement optimal control, based on approximate dynamic programming. The second objective is to evaluate the performance of the ANN-based solar PV system by simulating the PV system behavior for grid integration and maximum power extraction from solar PV array in a realistic residential PV application and building an experimental solar PV system for hardware validation. The results demonstrate that a residential PV system using the ANN control outperforms the PV system using the conventional standard vector control method and proportional resonant control method in both simulation and hardware implementation. This is also true in the presence of noise, disturbance, distortion, and nonideal conditions.

114 citations

Proceedings ArticleDOI
06 Nov 2009
TL;DR: In this paper, a new current source converter topology was proposed for single-phase photovoltaic (PV) applications, where the low frequency ripple was eliminated and the presence of low frequency residual ripple enabled significantly reduced-size passive components to achieve necessary stiffness.
Abstract: This paper presents a new current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison against the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverter has been eliminated; b) the absence of low frequency ripple enables significantly reduced-size passive components to achieve necessary stiffness; and c) improved maximum-power-point-tracking performance is readily achieved due to the tightened current ripple even with reduced-size passive components. This paper presents the proposed topology and its working principle backed up with numerical verifications.

110 citations


Network Information
Related Topics (5)
Photovoltaic system
103.9K papers, 1.6M citations
77% related
Wind power
99K papers, 1.5M citations
77% related
Electric power system
133K papers, 1.7M citations
76% related
Renewable energy
87.6K papers, 1.6M citations
73% related
Energy storage
65.6K papers, 1.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202126
202054
201954
201849
201737