scispace - formally typeset
Search or ask a question
Topic

Solar water heating

About: Solar water heating is a research topic. Over the lifetime, 1532 publications have been published within this topic receiving 33015 citations.


Papers
More filters
Book
01 Jan 1980
TL;DR: In this article, the authors present an active and passive building heating system for solar thermal power systems, where the active system is designed by f--chart and the passive one by Utilizability Methods.
Abstract: FUNDAMENTALS. Solar Radiation. Available Solar Radiation. Selected Heat Transfer Topics. Radiation Characteristics of Opaque Materials. Radiation Transmission Through Glazing: Absorbed Radiation. Flat--Plate Collectors. Concentrating Collectors. Energy Storage. Solar Process Loads. System Thermal Calculations. Solar Process Economics. APPLICATIONS. Solar Water Heating----Active and Passive. Building Heating----Active. Building Heating: Passive and Hybrid Methods. Cooling. Industrial Process Heat. Solar Thermal Power Systems. Solar Ponds: Evaporative Processes. THERMAL DESIGN METHODS. Simulations in Solar Process Design. Design of Active Systems by f--Chart. Design of Active Systems by Utilizability Methods. Design of Passive and Hybrid Heating Systems. Design of Photovoltaic Systems. Appendices. Author Index. Subject Index.

9,391 citations

Journal ArticleDOI
TL;DR: A survey of the various types of solar thermal collectors and applications is presented in this paper, where an analysis of the environmental problems related to the use of conventional sources of energy is presented and the benefits offered by renewable energy systems are outlined.

2,620 citations

Book
31 Dec 1990
TL;DR: In this article, the authors present a review of renewable energy technologies, including photovoltaic power technology, wind power technologies, wave power, and geothermal energy technologies with a focus on using energy efficient technologies.
Abstract: 1. Principles of Renewable Energy 2. Solar Radiation and the Greenhouse Effect 3. Solar Water Heating 4. Other Solar Thermal Applications 5. Photovoltaic Power Technology - PV 6. Hydropower 7. Wind Resource 8. Wind Power Technology 9. Biomass Resources from Photosynthesis 10. Bioenergy Technologies 11. Wave Power 12. Tidal-current and Tidal-range Power 13. Ocean Gradient Energy: OTEC and Osmotic Power 14. Geothermal Energy 15. Energy Systems: Integration, Distribution and Storage 16. Using Energy Efficiently 17. Institutional and Economic Factors Review 1: Electrical Power Review 2: Fluid Dynamics Review 3: Heat Transfer Review 4: Solid State Physics for Photovoltaics Review 5: Units and Conversions: Algebraic Method Appendix A: Units and Conversions Appendix B: Data Appendix C: Some Heat Transfer Formulas Appendix D: Comparisons of Technologies Short Answers to Selected Problems Index

1,173 citations

Journal ArticleDOI
TL;DR: In this article, the authors present various applications of neural networks mainly in renewable energy problems in a thematic rather than a chronological or any other order, which clearly suggest that artificial neural networks can be used for modelling in other fields of renewable energy production and use.
Abstract: Artificial neural networks are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems and, once trained, can perform prediction and generalisation at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimisation, signal processing and social/psychological sciences. They are particularly useful in system modelling such as in implementing complex mappings and system identification. This paper presents various applications of neural networks mainly in renewable energy problems in a thematic rather than a chronological or any other order. Artificial neural networks have been used by the author in the field of solar energy; for modelling and design of a solar steam generating plant, for the estimation of a parabolic trough collector intercept factor and local concentration ratio and for the modelling and performance prediction of solar water heating systems. They have also been used for the estimation of heating loads of buildings, for the prediction of air flow in a naturally ventilated test room and for the prediction of the energy consumption of a passive solar building. In all those models a multiple hidden layer architecture has been used. Errors reported in these models are well within acceptable limits, which clearly suggest that artificial neural networks can be used for modelling in other fields of renewable energy production and use. The work of other researchers in the field of renewable energy and other energy systems is also reported. This includes the use of artificial neural networks in solar radiation and wind speed prediction, photovoltaic systems, building services systems and load forecasting and prediction.

1,016 citations

Journal ArticleDOI
Arif Hepbasli1
TL;DR: In this article, a comprehensive review of the exergetic analysis and performance evaluation of a wide range of renewable energy resources (RERs) for the first time to the best of the author's knowledge is presented.
Abstract: Energy resources and their utilization intimately relate to sustainable development. In attaining sustainable development, increasing the energy efficiencies of processes utilizing sustainable energy resources plays an important role. The utilization of renewable energy offers a wide range of exceptional benefits. There is also a link between exergy and sustainable development. A sustainable energy system may be regarded as a cost-efficient, reliable, and environmentally friendly energy system that effectively utilizes local resources and networks. Exergy analysis has been widely used in the design, simulation and performance evaluation of energy systems. The present study comprehensively reviews exergetic analysis and performance evaluation of a wide range of renewable energy resources (RERs) for the first time to the best of the author's knowledge. In this regard, general relations (i.e., energy, exergy, entropy and exergy balance equations along with exergy efficiency, exergetic improvement potential rate and some thermodynamic parameters, such as fuel depletion ratio, relative irreversibility, productivity lack and exergetic factor) used in the analysis are presented first. Next, exergetically analyzed and evaluated RERs include (a) solar energy systems; (a1) solar collector applications such as solar water heating systems, solar space heating and cooling, solar refrigeration, solar cookers, industrial process heat, solar desalination systems and solar thermal power plants), (a2) photovoltaics (PVs) and (a3) hybrid (PV/thermal) solar collectors, (b) wind energy systems, (c) geothermal energy systems, (c1) direct utilization (district heating, geothermal or ground-source heat pumps, greenhouses and drying) and (c2) indirect utilization (geothermal power plants), (d) biomass, (e) other renewable energy systems, and (f) country based RERs. Studies conducted on these RERs are then compared with the previously ones in tabulated forms, while the Grassmann (or exergy flow) diagrams, which are a very useful representation of exergy flows and losses, for some RERs are given. Finally, the conclusions are presented. It is expected that this comprehensive study will be very beneficial to everyone involved or interested in the exergetic design, simulation, analysis and performance assessment of RERs.

777 citations


Network Information
Related Topics (5)
Renewable energy
87.6K papers, 1.6M citations
82% related
Photovoltaic system
103.9K papers, 1.6M citations
82% related
Wind power
99K papers, 1.5M citations
79% related
Heat transfer
181.7K papers, 2.9M citations
77% related
Solar cell
67.6K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202243
202157
202056
201959
201887