scispace - formally typeset
Search or ask a question
Topic

Solenoid

About: Solenoid is a research topic. Over the lifetime, 19278 publications have been published within this topic receiving 114721 citations.


Papers
More filters
Patent
10 Feb 1965

41 citations

Patent
01 Apr 1942
TL;DR: A solenoid operated valve with a primary diaphragm type valve member controlled in accordance with the fluid pressure on opposite sides thereof and a pilot valve having a fixed axially extending pilot valve outlet tube extending through a central opening in the diaphrasm valve member are discussed in this paper.
Abstract: A solenoid operated valve with a primary diaphragm type valve member controlled in accordance with the fluid pressure on opposite sides thereof and a solenoid operated pilot valve having a fixed axially extending pilot valve outlet tube extending through a central opening in the diaphragm valve member and operable for selectively referencing the fluid pressure on one side of the diaphragm with the valve outlet pressure.

41 citations

Patent
David Kilis1, Harold E. Stone1
16 Feb 1994
TL;DR: In this paper, an air flow device for use in recording, analyzing, replicating, and generating breathing patterns is presented, where a piping structure has a source connection for receiving a single constant source of pressurized gas.
Abstract: An air flow device for use in recording, analyzing, replicating, and generating breathing patterns. A piping structure provides receipt and transfer of pressurized gas through the device. The piping structure has a source connection for receiving a single constant source of pressurized gas. Aspirators are connected to the piping structure for receiving pressurized gas from the source connection and for selectively creating an output pressurization comprising a positive pressure gas flow and a negative pressure gas flow at a proportional solenoid valve. A balancing valve is connected to the piping structure for controlling and calibrating the output pressurization of the aspirators. A control system provides control of the aspirators, the balancing valve, and a solenoid valve. A solenoid valve is mechanically connected to the piping structure with pneumatic input and output connections and electronically connected to the control system with data input and output connections. The solenoid valve provides patterned pneumatic flow between the aspirators and a system model according to air flow commands received by the solenoid from the control system. The system model, in one embodiment, is a breath actuated inhaler device.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the saturation fields of cylindrical cryogenic magnetic shields, for quarter-wave resonator cavities, of diameters ranging from 229 to 447 mm were measured at 300 and 10 K.
Abstract: The saturation fields of cylindrical cryogenic magnetic shields, for quarter-wave resonator cavities, of diameters ranging from 229 to 447 mm were measured at 300 and 10 K. A 0.86 T normal conducting solenoid and a 2.5 T superconducting solenoid were used at 300 and 10 K, respectively. The shielding of the high magnetic field region of the cavity, due to fringe fields entering the shield through the beam-port holes of the shield, was examined. The relative initial permeability of toroidal samples from two cryogenic shielding materials were measured at 0.358 A/m, at different frequencies, to extrapolate the static value. These samples were also exposed to external fields up to 0.86 T at 300 K, and the residual magnetic field was measured to check for magnetization of the shielding materials. Results indicate that the performances of the measured cryogenic shielding materials are dependent on the magnitude of the applied field. The performances are improved at cryogenic temperatures only when the shields are exposed to small magnetic fields. At greater fields, however, the performance is degraded at cryogenic temperatures. The shielding materials are not magnetized when exposed to fields up to 0.86 T.

41 citations

Journal ArticleDOI
TL;DR: In this article, an electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas, which was driven by a pulsed power system supplying 30 kJ.
Abstract: An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

41 citations


Network Information
Related Topics (5)
Magnetic field
167.5K papers, 2.3M citations
81% related
Voltage
296.3K papers, 1.7M citations
80% related
Superconductivity
71.9K papers, 1.3M citations
78% related
Electric field
87.1K papers, 1.4M citations
78% related
Beam (structure)
155.7K papers, 1.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023144
2022292
2021230
2020404
2019459
2018596