scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: Solid lipid nanoparticles suspensions were shown as efficient as commercial solutions for skin penetration and were non-corrosive while commercial solutions presented a corrosive potential; and would constitute a promising formulation for hair loss treatment.

77 citations

Journal ArticleDOI
TL;DR: Results indicate that SLN may be promising lung-targeting drug carrier for lipophilic drugs such as DXM.
Abstract: The objective of the present study was to develop a novel solid lipid nanoparticle (SLN) for the lung-targeting delivery of dexamethasone acetate (DXM) by intravenous administration. DXM loaded SLN colloidal suspensions were prepared by the high pressure homogenization method. The mean particle size, drug loading capacity and drug entrapment efficiency (EE %) of SLNs were investigated. In vitro drug release was also determined. The biodistribution and lung-targeting efficiency of DXM-SLNs and DXM-solutions (DXM-sol) in mice after intravenous administration were studied using reversed-phase high-performance liquid chromatography (HPLC). The results (expressed as mean ± SD) showed that the DXM-SLNs had an average diameter of 552 ± 6.5 nm with a drug loading capacity of 8.79 ± 0.04% and an entrapment efficiency of 92.1 ± 0.41%. The in vitro drug release profile showed that the initial burst release of DXM from DXM-SLNs was about 68% during the first 2 h, and then the remaining drug was released gradually over the following 48 hours. The biodistribution of DXM-SLNs in mice was significantly different from that of DXM-sol. The concentration of DXM in the lung reached a maximum level at 0.5 h post DXM-SLNs injection. A 17.8-fold larger area under the curve of DXM-SLNs was achieved compared to that of DXM-sol. These results indicate that SLN may be promising lung-targeting drug carrier for lipophilic drugs such as DXM.

77 citations

Journal ArticleDOI
TL;DR: The utility of various targetedSolid lipid-based nanocarriers applications over other nanoparticles (NPs) are reviewed and their applications in drug and gene delivery systems are discussed.
Abstract: Most of the active pharmaceutical ingredients are often prone to display low bioavailability, biological degradation and inadvertent intrinsic side effects. To circumvent such obstacles, the expansion of efficient and novel drug carrier system is of increasing importance in terms of their efficient applicability through different administration routes such as dermal, oral, topical, parenteral and pulmonary. To pursue such aims, as an effective strategy, targeted delivery of drugs/genes to specific tissues/cells has widely been investigated. Accordingly, colloidal delivery of nanosystems such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, niosomes and transfersomes have materialized great means towards improved targeted delivery of drug/gene cargoes. The potential advantages of solid lipid-based nanocarriers applications over other nanoparticles (NPs) are because of their high biocompatibility, higher drug loading capacity and scalability. In this study, we review the utility of various targeted solid lipid-based nanocarriers and discuss their applications in drug and gene delivery systems.

77 citations

Journal ArticleDOI
TL;DR: The AmB-SLNs are a safe and efficacious drug delivery system which promises strong competence in antileishmanial chemotherapy and immunotherapy and demonstrates the better safety profile of developed formulation in comparison to marketed formulations.
Abstract: Solid lipid nanoparticles (SLNs) have emerged as an excellent substitute over polymeric nanoparticles and, when incorporated with chitosan which activates the macrophage to impart an immune response, produce excellent results to fight against deleterious diseases like leishmaniasis where its parasite diminishes the immunity of the host to induce resistance. Based upon this hypothesis, chitosan-coated SLNs were developed and loaded with amphotericin B (AmB) for immunoadjuvant chemotherapy of Leishmania infection. Both uncoated and chitosan-coated AmB-loaded SLNs (AmB-SLNs) were fabricated using solvent emulsification and evaporation method. The various processes and formulation parameters involved in AmB-SLN preparation were optimized with respect to particle size and stability of the particles. In vitro hemolytic test credited the formulations to be safe when injected in the veins. The cellular uptake analysis demonstrated that the chitosan-coated AmB-SLN was more efficiently internalized into the J774A.1 cells. The in vitro antileishmanial activity revealed their high potency against Leishmania-infected cells in which chitosan-coated AmB-SLNs were distinguishedly efficacious over commercial formulations (AmBisome and Fungizone). An in vitro cytokine estimation study revealed that chitosan-coated AmB-SLNs activated the macrophages to impart a specific immune response through enhanced production of TNF-α and IL-12 with respect to normal control. Furthermore, cytotoxic studies in macrophages and acute toxicity studies in mice evidenced the better safety profile of developed formulation in comparison to marketed formulations. This study indicates that the AmB-SLNs are a safe and efficacious drug delivery system which promises strong competence in antileishmanial chemotherapy and immunotherapy.

77 citations

Journal ArticleDOI
TL;DR: Investigation of the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells shows enhanced delivery compared to emulsion droplets containing liquid soy oil.
Abstract: Solid lipid nanoparticles (SLN) have shown potential for encapsulation, protection and delivery of lipophilic functional components. In this study, we have investigated the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells. The cells were grown on transport filters to mimic the human intestinal epithelium. Because of the hydrophobic nature of curcumin, its delivery to the basolateral compartment is expected to take place via a paracellular route. The changes in curcumin concentration in various compartments (i.e., apical, basolateral, mucus, and cell lysates) were evaluated using fluorescence spectroscopy. Two SLN systems were prepared with different emulsifying agents. The encapsulation of curcumin in SLN caused enhanced delivery compared to unencapsulated curcumin. In addition, SLN showed enhanced delivery compared to emulsion droplets containing liquid soy oil. The SLN were retained on the apical mucosal layer to a greater extent than emulsion droplets. The presence of SLN did not affect the integrity of the cellular junctions, as indicated by the TEER values, and the route of transport of the solid particles was simple diffusion, with permeability rates of about 7 × 10−6 cm s−1. Approximately 1% of total curcumin was delivered to the basolateral compartment, suggesting that most of the curcumin was absorbed and metabolized by the cell.

77 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226