scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that this solid lipid nanoparticle (SLN)-based system may serve as a novel, simple, and efficient system for the delivery of BH.
Abstract: Berberine hydrochloride (BH) is an isoquinolin alkaloid with promising anticancer efficacies. Nevertheless, further development and application of this compound had been hampered by its poor aqueous solubility, low gastrointestinal absorption, and rapid metabolism in the body. In this study, a solid lipid nanoparticle (SLN)-based system was developed for efficient incorporation and persistent release of BH. The drug-loading SLNs (BH-loaded SLNs) were stable, with a mean particle size of 81.42 ± 8.48 nm and zeta potential of −28.67 ± 0.71 mV. BH-loaded SLNs showed desirable drug entrapment efficiency and drug-loaded, and the release of BH from SLNs was significantly slower than free BH. Importantly, our in vitro study indicated that BH-loaded SLNs more significantly inhibited cell proliferation on MCF-7, HepG 2, and A549 cancer cells. Meanwhile, clone formation, cellular uptake, cell cycle arrest, and cell apoptosis studies also demonstrated that BH-loaded SLNs enhanced the antitumor efficacies of BH on MCF-7 cancer cells. Taken together, our results suggest that this SLN formulation may serve as a novel, simple, and efficient system for the delivery of BH.

73 citations

Journal ArticleDOI
TL;DR: In this paper, aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties including controlled drug delivery is presented.
Abstract: The present work aims at preparing aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties which include controlled drug delivery. Carbamezapine (CBZ) is a lipophilic drug which shows it antiepileptic activity by inactivating sodium channels. The solid lipid Nanoparticles (SLN) of Chitosan-CBZ were prepared by using solvent injection method using ethanol as organic solvent. The prepared SLN formulations exhibited high encapsulation efficiency, high physical stability. The drug incorporated SLNs have demonstrated that the controlled release patterns of the drug for prolonged period. The prepared SLNs were characterized for surface morphology by SEM analysis, entrapment efficiency, zeta potential, FTIR, DSC and In-vitro diffusion studies. The hydrodynamic mean diameter and zeta potential were 168.7 ±1.8 nm and −28.9 ±2.0 mV for SLN-chitosan-CBZ respectively. Therefore chitosan-SLN can be good candidates to encapsulate CBZ and to increase its therapeutic efficacy in the treatment of Epilepsy.

73 citations

Journal ArticleDOI
TL;DR: Solid lipid nanoparticles functionalized with apolipoprotein E were tested in hCMEC/D3 cell monolayers and clathrin-mediated endocytosis was distinguished as the preferential internalization pathway involved in cellular uptake and nanoparticles could cross the blood-brain barrier predominantly by a transcellular pathway.

73 citations

Journal ArticleDOI
TL;DR: The developed formulation showed an active antimicrobial activity against P. aeruginosa and even against other opportunistic pathogens such as Staphylococcus aureus and the presence of LV-loaded NLCs reduced the formation of a bacterial biofilm, which highlighted the significance of the nanodevice as a new alternative for CF treatment.

73 citations

Journal ArticleDOI
15 Mar 2014
TL;DR: This study investigated the effect of different liquid carrier oils on the crystallization and aggregation behavior of tristearin NLC dispersions and found that NLC suspension stability was strongly affected by the type and amount of the carrier oil.
Abstract: Second generation lipid systems for the delivery of bioactive compounds have been developed by mixing a liquid carrier oil with a solid lipid to form so-called nanostructured lipid carriers (NLCs). In this study, we investigated the effect of different liquid carrier oils on the crystallization and aggregation behavior of tristearin NLC dispersions. We found that NLC suspension stability was strongly affected by the type and amount of the carrier oil. As the oil concentration was increased, the crystallization and melting temperatures decreased, the polymorphic transformation rate increased, the particles became more spherical, and suspension stability was enhanced. These results suggest that oil trapped within the growing crystal matrix accelerated polymorphic transformation but retarded the large shape change normally associated with the transformation. We also found that considerably less surfactant was necessary to produce stable NLC suspensions than was required to stabilize solid lipid nanoparticle (SLN) suspensions without a carrier oil. Based on preliminary simulation results, we hypothesized that improved NLC suspension stability was attributable to both reduced particle shape change, which created less new surface area to be covered by surfactant, and increased mobility of surfactant molecules, which resulted in available surfactant being more efficient at covering created surface area.

73 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226