scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: A new process for the preparation of SLN using a membrane contactor to allow large scale production is presented and its facility of use and its scaling-up ability are demonstrated.
Abstract: Solid lipid nanoparticles (SLN) were introduced in the 1990s as an alternative to microemulsions, polymeric nanoparticles, and liposomes. The SLN are reported to have several advantages, i.e., their biocompatibility and their controlled and targeted drug release. In this paper, we present a new process for the preparation of SLN using a membrane contactor to allow large scale production. The lipid phase is pressed, at a temperature above the melting point of the lipid, through the membrane pores allowing the formation of small droplets. The lipid droplets are then detached from the membrane pores by the aqueous phase flowing tangentially to the membrane surface. The SLN are formed by the following cooling of the preparation below the lipid melting point. The influence of the aqueous phase and lipid phase formulations on the lipid phase flux and on the SLN size are studied. It is shown that SLN are obtained with a lipid phase flux between 0.21 and 0.27 m3/h.m2, SLN size between 175 and 260 nm. The advantag...

60 citations

Journal ArticleDOI
TL;DR: NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment and performed well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO.

60 citations

Journal ArticleDOI
TL;DR: The bioavailability and antihyperlipidemic activity of Andrographolide were improved by AND-SLNs by increasing the solubility and stability of AND in the intestine and by changing its transport mode in Caco-2 cell.

60 citations

Journal ArticleDOI
TL;DR: The results of characterization studies and of in vitro antiproliferative activity strongly support the potential application of tamoxifen-loaded SLNs as a carrier system at prolonged release useful for intravenous administration in breast cancer therapy.
Abstract: Solid lipid nanoparticles (SLNs) containing tamoxifen, a nonsteroidal antiestrogen used in breast cancer therapy, were prepared by microemulsion and precipitation techniques. Tamoxifen loaded SLNs seem to have dimensional properties useful for parenteral administration, and in vitro plasmatic drug release studies demonstrated that these systems are able to give a prolonged release of the drug in the intact form. Preliminary study of antiproliferative activity in vitro, carried out on MCF-7 cell line (human breast cancer cells), demonstrated that SLNs, containing tamoxifen showed an antitumoral activity comparable to free drug. The results of characterization studies and of in vitro antiproliferative activity strongly support the potential application of tamoxifen-loaded SLNs as a carrier system at prolonged release useful for intravenous administration in breast cancer therapy.

59 citations

Journal ArticleDOI
TL;DR: In vivo biodistribution studies indicated very low levels of Amphotericin B in kidneys when given as AmbiOnp as compared to that of marketed formulation proving its safety and was further corroborated by renal toxicity studies.
Abstract: Amphotericin B, a gold standard broad spectrum antibiotic used in treatment of systemic fungal infections and visceral leishmaniasis, though is effective parenterally offers severe nephrotoxicity whereas the oral delivery is reported to give very meager oral bioavailability. Thus, to alleviate the toxicity and to improve oral bioavailability, an effective oral delivery approach in the form of solid lipid nanoparticles of amphotericin B (AmbiOnp) was reported earlier by our group. In this investigation, we report the predominant formation of nontoxic superaggregated form of amphotericin B, resulting from the probe sonication-assisted nanoprecipitation technique. The developed formulation was further confirmed to retain this nontoxic form and was found to be stable over the varied gastrointestinal conditions. Further, in vitro antifungal activity of AmbiOnp against Candida albicans showed minimum inhibitory concentration value of 7.812 μg/mL attributed to controlled release of drug from nanoparticulate matrix. In vivo pharmacokinetic studies revealed a relative bioavailability of AmbiOnp to be 1.05-fold with a Cmax of 1109.31 ± 104.79 ng/mL at the end of 24 h which was comparable to Cmax of 1417.49 ± 85.52 ng/mL achieved with that of marketed formulation (Fungizone®) given intravenously establishing efficacy of AmbiOnp. In vivo biodistribution studies indicated very low levels of Amphotericin B in kidneys when given as AmbiOnp as compared to that of marketed formulation proving its safety and was further corroborated by renal toxicity studies. Further, the formulations were found to be stable under refrigeration condition over a period of 3 months.

59 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226