scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: The optimized TP-SLN nanoparticles manifested a sustained-release pattern in vitro and were stable during 3 h of incubation in simulated gastric fluids without significant size change and the majority (91%) of the drug was protected.
Abstract: Triptolide (TP) often causes adverse reactions in the gastrointestinal tract when it is administered orally. This study aimed to prepare and optimize triptolide-loaded solid lipid nanoparticles (TP-SLN) with reduced gastric irritation. The microemulsion technique was used to formulate TP-SLN employing a five-level central composite design (CCD) that was developed for exploring the optimum levels of three independent variables on particle size, encapsulation efficiency (EE) and drug loading (DL). Quadratic polynomial models were generated to predict and evaluate the three independent variables with respect to the three responses. The optimized TP-SLN was predicted to comprise fraction of lipid of 49.73%, surfactant to co-surfactant ratio of 3.25, and lipid to drug ratio of 55.27, which showed particle size of 179.8 ± 5.7 nm, EE of 56.5 ± 0.18% and DL of 1.02 ± 0.003% that were in good agreement with predicted values. In addition, the optimized nanoparticles manifested a sustained-release pattern in vitro and were stable during 3 h of incubation in simulated gastric fluids without significant size change and the majority (91%) of the drug was protected. Furthermore, the nanoparticles did not show obvious gastric irritation caused by oral administration of TP in rats.

58 citations

Journal ArticleDOI
TL;DR: In vitro skin experiments showed excellent skin permeation and penetration properties for flufenamic acid from all formulations, and ATR-FTIR studies revealed barrier-restorative properties for NLC and SLN.

58 citations

Journal ArticleDOI
TL;DR: A twofold increase in bioavailability with SLN formulations confer their potential for improved oral delivery of RXH, and in situ perfusion studies in rat intestine reveal the potential of SLN for enhanced permeation of raloxifene HCl across gastrointestinal barrier.

58 citations

Journal ArticleDOI
TL;DR: The potential application of thermosensitive SLNs for the delivery of difficult-to-permeate, poorly water-soluble drugs into deep skin layers is revealed.
Abstract: Background: Tacrolimus (TCR), also known as FK-506, is a biopharmaceutics classification system (BCS) class II drug that is insoluble in water because of its high log P values. After dermal application, TCR remains in the stratum corneum and passes through the skin layers with difficulty. Purpose: The objectives of this study were to develop and evaluate solid lipid nanoparticles (SLNs) with thermosensitive properties to improve penetration and retention. Methods: We prepared TCR-loaded thermosensitive solid lipid nanoparticles (TCR-SLNs) with different types of surfactants on the shell of the particle, which conferred the advantages of enhancing skin permeation and distribution. We also characterized them from a physic point of view and performed in vitro and in vivo evaluations. Results: The TCR contained in the prepared TCR-SLN was in an amorphous state and entrapped in the particles with a high loading efficiency. The assessment of ex vivo skin penetration using excised rat dorsal skin showed that the TCR-SLNs penetrated to a deeper layer than the reference product (0.1% Protopic®). In addition, the in vivo skin penetration test demonstrated that TCR-SLNs delivered more drug into deeper skin layers than the reference product. FT-IR images also confirmed drug distribution of TCR-SLNs into deeper layers of the skin. Conclusion: These results revealed the potential application of thermosensitive SLNs for the delivery of difficult-to-permeate, poorly water-soluble drugs into deep skin layers.

58 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226