scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
01 Jan 2010-Micron
TL;DR: Investigations into gamma-oryzanol was incorporated into glycerol behenate nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.

57 citations

Journal Article
TL;DR: It was found that 1.5% TegoCare 450 was the most effective stabilizer for the Witepsol E85 SLN dispersion compared to Tween 80, Tyloxapol and Pluronic F68 according to the data obtained from differential scanning calorimetry (DSC), zeta potential (ZP) measurements and particle size analysis.
Abstract: The choice of surfactant or surfactant mixtures at suitable concentrations contributes to the stability of solid lipid nanoparticles (SLN). In this study, it was found that 1.5% TegoCare 450 was the most effective stabilizer for the Witepsol E85 SLN dispersion compared to Tween 80, Tyloxapol and Pluronic F68 according to the data obtained from differential scanning calorimetry (DSC), zeta potential (ZP) measurements and particle size analysis.

57 citations

Journal ArticleDOI
TL;DR: The in vivo result of formulated solid lipid nanoparticles of cisplatin reveals that the drug is preferentially targeting to liver followed by brain and lungs.
Abstract: The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Solid lipid nanoparticulate delivery system of cisplatin has been developed by microemulsification method by using stearic acid, soy lecithin 95% and sodium glycolate. The formulations were then characterized with respect to size and its surface morphology, zeta potential, entrapment efficiency, in vitro drug release profile, in vivo drug targeting studies and its stability under specific conditions. The formulated solid lipid nanoparticles were oval with a diameter ranging from 250 nm to 500 nm. The lowest entrapment efficiency was found to be 47.59% and highest was found to be 74.53%. The zeta potential was in the range of -9.8 to -11.2 mv. In vitro release study was analyzed using various mathematical models. Highest cumulative percent drug release was observed with F-1 (97.22 %) and lowest with F-4 (78.43%) in 16 h. The in vivo result of formulated solid lipid nanoparticles of cisplatin reveals that the drug is preferentially targeting to liver followed by brain and lungs.

57 citations

Journal ArticleDOI
TL;DR: The in vitro cytotoxicity results demonstrated strong activity of ART against cancer cell lines and the formulation of ART loaded PLGA nanoparticles supported a potential application of ART as an anticancer agent.
Abstract: Artesunate (ART)—a well-known anti-malarial agent is also known to have potential anti-proliferative activities but its instability, poor aqueous solubility, and lack of relevant studies have limited its application as an effective anti-cancer drug. To overcome these problems, ART was loaded in poly (lactic-co-glycolic) acid (PLGA) nanoparticles using oil/water emulsion evaporation method. PLGA nanoparticles with small particle size and high entrapment efficiency were obtained. The PLGA nanoparticles were optimized by evaluating the effects of several formulation parameters on physicochemical properties of nanoparticles. The in vitro cytotoxicity of blank PLGA, free ART, and ART-PLGA on 3 human cancer cell lines viz. A549, SCC-7, and MCF-7 was conducted using MTT assay. The particles showed nanometric size (~170 nm), large entrapment efficiency (up to 83.4 %), and excellent stability (evaluated for 1 month) after lyophilization with 5 % mannitol. ART was dispersed inside particle core allowing a sustained release up to 48 h. The in vitro cytotoxicity results demonstrated strong activity of ART against cancer cell lines. The ART-PLGA formulation significantly reduced cell viability than the free ART. The formulation of ART loaded PLGA nanoparticles supported a potential application of ART as an anticancer agent.

57 citations

Journal ArticleDOI
TL;DR: Conclusively, in this investigation, a stable lycopene-SLNs with good physicochemical characteristic is prepared, which candidate it for the future in vivo trials in nutraceutical industries.
Abstract: Purpose: Lycopene belongs to the carotenoids that shows good pharmacological properties including antioxidant, anti-inflammatory and anticancer. However, as a result of very low aqueous solubility, it has a limited systemic absorption, following oral administration. Methods: Here, we prepared a stable lycopene-loaded solid lipid nanoparticles using Precirol® ATO5, Compritol 888 ATO and myristic acid by hot homogenization method with some modification. The size and morphological characteristics of nanoparticles were evaluated using Scanning Electron Microscopy (SEM). Moreover, zeta potential and dispersity index (DI) were measured using zeta sizer. In addition, encapsulation efficiency (EE%), drug loading (DL) and cumulative drug release were quantified. Results: The results showed that the size and DI of particles was generally smaller in the case of SLNs prepared with precirol when compared to SLNs prepared with compritol. Scanning electron microscopy (SEM) and particle size analyses showed spherical SLNs (125 ± 3.89 nm), monodispersed distribution, and zeta potential of −10.06 ± 0.08 mV. High EE (98.4 ± 0.5 %) and DL (44.8 ± 0.46 mg/g) were achieved in the case of nanoparticles prepared by precirol. The stability study of the lycopene-SLNs in aqueous medium (4 °C) was showed that after 2 months there is no significant differences seen in size and DI compared with the fresh formulation. Conclusion: Conclusively, in this investigation we prepared a stable lycopene-SLNs with good physicochemical characteristic which candidate it for the future in vivo trials in nutraceutical industries.

57 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226