scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: Higher carvedilol uptake from SLNs compared to drug solution in the Caco-2 cell line exhibited a potential prolonged drug release and upon cellular uptake, SLNs could then enter the lymphatic system which will avoid first pass metabolism and hence higher oral bioavailability.
Abstract: Carvedilol-loaded solid lipid nanoparticles (SLNs) were prepared using solubility parameter (δ) to select the lipid, and hot homogenization to fabricate SLNs. The effect of concentration of Compritol 888 ATO (COMP) and Poloxamer 188 (P-188) on the particle size of blank SLNs was studied using the design of experiments. Further narrow concentration range of COMP and P-188 was selected and carvedilol-loaded SLNs were prepared to obtain an optimized formulation which was lyophilized (L-SLNs), transformed into enteric compression-coated tablet and evaluated for drug release, X-ray diffraction and cellular uptake mechanism. COMP was chosen as lipid due to its least value of Δδ with carvedilol. The optimized formulation (7.5% COMP, 5.0% P-188 and 1.11% carvedilol) had 161 nm particle size and 94.8% entrapment efficiency. The enteric-coated carvedilol-loaded SLNs tablet protected carvedilol from acidic environment and similar prolonged release profiles were obtained from L-SLNs, core tablet and enteric-c...

54 citations

Journal ArticleDOI
TL;DR: Results clearly indicate that olmesartan loaded solid lipid nanoparticles are shown to have enhanced bioavailability and effective therapeutic result and thus would be an excellent way to treat hypertension.

54 citations

Journal ArticleDOI
TL;DR: In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions, and this effect was further confirmed by imaging the entire brain and brain slices.
Abstract: Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

54 citations

Journal ArticleDOI
TL;DR: Though the drug initially bypassed the liver metabolism, simvastatin continuously entered in liver to exert its therapeutic action that was evidenced by biodistribution study, substantiating the protective action of SLNs against liver metabolism.
Abstract: The purpose of the present investigation was to develop solid lipid nanoparticles (SLNs) of simvastatin in order to enhance its oral bioavailability by minimizing its first-pass metabolism. To achieve our goal, SLNs were prepared by solvent injection technique and optimized by 23 full factorial experimental design using Design Expert software. The SLN formulations were optimized for amount of compritol, concentration of poloxamer, and volume of acetone in order to achieve desired responses of particle size, entrapment efficiency (EE), and cumulative drug release (CDR). Response surface plots were constructed to study the influence of each variable on each response and the interactions between any two variables were also analyzed. Formulation F10 with particle size of 271.18 nm, % EE of 68.16% and % CDR of 76.23%, and highest desirability value of 0.645 was selected as optimized formulation. The optimized formulation was evaluated for biodistribution and pharmacokinetics by technetium-99m (Tc-99m) radiolab...

54 citations

Journal ArticleDOI
TL;DR: In vitro tyrosinase inhibition assay indicates that the formulated gel has potential in skin depigmentation, and the CUR-SLN gel would be a safe and effective alternative to conventional vehicles for treatment of ICD and pigmentation.
Abstract: Irritant contact dermatitis (ICD) and hyperpigmentation are the problems associated with skin. Topical curcumin (CUR) although effective in hyperpigmentation and ICD, is a challenging molecule due to low-solubility. Encapsulation of CUR into solid lipid nanoparticles (SLNs) makes it amenable to topical dosing as their small size promotes its penetration into the skin. CUR-SLNs were prepared using Precirol ATO5 and Tween-80 by probe ultrasonication method. Further, CUR-SLNs were incorporated into Carbopol gel and investigated for ex-vivo skin permeation, skin deposition and skin irritation studies. The potential of CUR-SLN gel was checked against hyperpigmentation through the inhibition of tyrosinase enzyme. It was further evaluated for possible effects on ICD using BALB/c mice. The optimized CUR-SLN showed the particle size of 51 nm and 93% EE. Ex vivo permeation of CUR-SLN gel exhibited controlled drug release up to 24 h, similarly in vitro drug deposition studies showed potential for skin target...

54 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226