scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Patent
04 Apr 2007
TL;DR: In this paper, the use of modified lipid nano/micro particles for the oral delivery of drugs and antigen delivery systems is described, which have been modified, preferably on their surface, to contain a molecule or ligand, which targets the nano-micro particles to a specific site.
Abstract: The present invention encompasses lipid nano/micro particles, which have been modified, preferably on their surface, to contain a molecule or ligand, which targets the nano/micro particles to a specific site. The invention also encompasses the use of the modified lipid nano/micro particles for the oral delivery of drugs and antigen delivery systems.

45 citations

Journal ArticleDOI
TL;DR: In this article, solid lipid nanoparticles loaded with PZQ (PZQ-SLN) were prepared by a modified oil-in-water microemulsion method selecting stearic acid as lipid phase after solubility screening studies.
Abstract: Praziquantel (PZQ) is the drug of choice for oral treatment of schistosomiasis and other fluke infections that affect humans. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. In this article, solid lipid nanoparticles loaded with PZQ (PZQ-SLN) were prepared by a modified oil-in-water microemulsion method selecting stearic acid as lipid phase after solubility screening studies. The mean particle size (Z-Ave) and zeta potential (ZP) were 500 nm and −34.0 mV, respectively. Morphology and shape of PZQ-SLN were analysed by scanning electron microscopy revealing the presence of spherical particles with smooth surface. Differential scanning calorimetry suggested that SLN comprised a less ordered arrangement of crystals and the drug was molecularly dispersed in the lipid matrix. No supercooled melts were detected. The entrapment efficiency (EE) and loading capacity of PZQ, determined by high performance liquid chromatography, were 99.06 ± 0.3 and 17.48 ± 0.05, respectively. Effective incorporation of PZQ into the particles was confirmed by small angle X-ray scattering revealing the presence of a lipid lamellar structure. Stability parameters of PZQ-SLN stored at room temperature (25 °C) and at 4 °C were checked by analysing Z-Ave, ZP and the EE for a period of 60 days. Results showed a relatively long-term physical stability after storage at 4 °C, without drug expulsion.

45 citations

Journal ArticleDOI
TL;DR: Results indicate a strong and synergic effect of iontophoresis with DOX-SLN and provide a potential strategy for the treatment of skin cancer.
Abstract: The topical administration of chemotherapeutics is a promising approach for the treatment of skin cancer; however, different pharmaceutical strategies are required to allow large amounts of drug to penetrate tumors. This work examined the potential of the anodic iontophoresis of doxorubicin-loaded cationic solid lipid nanoparticles (DOX-SLN) to increase the distribution and tumor penetration of DOX. A double-labeled cationic DOX-SLN composed of the lipids stearic acid and monoolein and a new BODIPY dye was prepared and characterized. The skin distribution and penetration of DOX were evaluated in vitro using confocal microscopy and vertical diffusion cells, respectively. The antitumor potential was evaluated in vivo through the anodic iontophoresis of DOX-SLN in squamous cell carcinoma induced in nude BALB/c mice. The encapsulation of DOX drastically altered the DOX partition coefficient and increased the distribution of DOX in the lipid matrix of the stratum corneum (SC). The association with iontophoresis created high-concentration drug reservoir zones in the follicles of the skin. Although the iontophoresis of a DOX solution increased the penetration of DOX in the viable epidermis by approximately 4-fold, the iontophoresis of cationic DOX-SLN increased the DOX penetration by approximately 50-fold. In vivo, the DOX-SLN iontophoretic treatment was effective in inhibiting tumor cell survival and tumor growth and was accompanied by an increase in keratinization and consequent cell death. These results indicate a strong and synergic effect of iontophoresis with DOX-SLN and provide a potential strategy for the treatment of skin cancer.

45 citations

Journal ArticleDOI
TL;DR: Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme and showed good colloidal stability, the ability to cross an in vitro blood–brain barrier model, and a superior pro-apoptotic activity toward gliOBlastoma cells with respect to the free drug.

45 citations

Journal ArticleDOI
TL;DR: The data confirmed that SLNs could be exploited for sustained lipophilic GBA delivery and may be due to the accumulation of GBA-SLNs in the tumor site because of deviant tumor pathology.
Abstract: Context: Galbanic acid (GBA) is a sesquiterpene coumarin with different medicinal properties and anticancer effects.Objective: To improve the anticancer activities of GBA, in the current study, we aimed to fabricate GBA-loaded solid lipid nanoparticles (GBA-SLNs) and study their biological activities in vitro.Materials and methods: Hot homogenization was used for preparation of GBA-SLNs. The encapsulation efficiency (EE) and drug loading (DL) and in vitro release were determined. MTT, DAPI, DNA fragmentation, comet, and Anexin V apoptosis assays were used to compare the anti-cell proliferation and genotoxicity properties of GBA and GBA-SLNs against A549 cells and HUVEC to detect apoptosis and DNA damage in the final concentration of 100 µM after 48 h treatment.Results: Scanning electron microscopy (SEM) and particle size analysis showed spherical SLNs (92 nm), monodispersed distribution, and zeta potential of −23.39 mV. High EE (>98%) and long-term in vitro release were achieved. The stability of ...

45 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226