scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: A systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease finds each are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route.
Abstract: Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

208 citations

Journal ArticleDOI
TL;DR: This review aims to give an overview of the most investigated applications of transcutaneously applied particle-based formulations in the fields of cosmetics and dermatology.
Abstract: Recent advances in the field of nanotechnology have allowed the manufacturing of elaborated nanometer-sized particles for various biomedical applications. A broad spectrum of particles, extending from various lipid nanostructures such as liposomes and solid lipid nanoparticles, to metal, nanocrystalline and polymer particles have already been tested as drug delivery systems in different animal models with remarkable results, promising an extensive commercialization in the coming years. Controlled drug release to skin and skin appendages, targeting of hair follicle-specific cell populations, transcutaneous vaccination and transdermal gene therapy are only a few of these new applications. Carrier systems of the new generation take advantage of improved skin penetration properties, depot effect with sustained drug release and of surface functionalization (e.g., the binding to specific ligands) allowing specific cellular and subcellular targeting. Drug delivery to skin by means of microparticles and nanocarriers could revolutionize the treatment of several skin disorders. However, the toxicological and environmental safety of micro- and nanoparticles has to be evaluated using specific toxicological studies prior to a wider implementation of the new technology. This review aims to give an overview of the most investigated applications of transcutaneously applied particle-based formulations in the fields of cosmetics and dermatology.

207 citations

Journal ArticleDOI
TL;DR: Results suggest that beta-carotene may be stabilized by LM- or HM-lecithin when liquid carrier lipids are used and (2) HM-Lecith in whenSolid lipid nanoparticle (SLN) suspensions containing encapsulated beta- carotene is used.
Abstract: The impact of surfactant type on the physical and chemical stability of solid lipid nanoparticle (SLN) suspensions containing encapsulated beta-carotene was investigated. Oil-in-water emulsions were formed by homogenizing 10% w/w lipid phase (1 mg/g beta-carotene in carrier lipid) and 90% w/w aqueous phase (surfactant + cosurfactant) at pH 7 and 75 degrees C and then cooling to 20 degrees C. The impact of surfactant type was investigated using aqueous phases containing different water-soluble surfactants [2.4% w/w high-melting (HM) lecithin, 2.4% w/w low-melting (LM) lecithin, and 1.4% w/w Tween 60 or 1.4% w/w Tween 80] and a cosurfactant (0.6% taurodeoxycholate). The impact of the physical state of the carrier lipid was investigated by using either a high melting point lipid (tripalmitin) to form solid particles or a low melting point lipid (medium chain triglycerides, MCT) to form liquid droplets. A higher fraction of alpha-crystals was detected in solid particles prepared with high-melting surfactants (HM-lecithin and Tween 60) than with low-melting surfactants (LM-lecithin and Tween 80). With the exception of the HM-lecithin-coated solid particles, the suspensions were stable to particle aggregation during 21 days of storage. beta-Carotene degradation after 21 days of storage was 11, 97, 100, and 91% in the solid particles (tripalmitin) and 16, 21, 95, and 90% in the liquid droplets (MCT) for HM-lecithin, LM-lecithin, Tween 80, and Tween 60, respectively. These results suggest that beta-carotene may be stabilized by (1) LM- or HM-lecithin when liquid carrier lipids are used and (2) HM-lecithin when solid carrier lipids are used. The origin of this latter effect is attributed to the impact of the surfactant tails on the generation of a crystal structure better suited to maintain the chemical stability of the encapsulated bioactive.

204 citations

Journal ArticleDOI
TL;DR: It is indicated that SLN could be effective colloidal carriers for lymphoscintigraphy or therapy upon pulmonary delivery and an important and significant uptake of the radiolabelled SLN into the lymphatics after inhalation, and a high rate of distribution in periaortic, axillar and inguinal lymph nodes.
Abstract: Lymphatic drainage plays an important role in the uptake of particulates in the respiratory system, being also associated to the spreading of lung cancer through metastasis development. In recent years solid lipid nanoparticles (SLN) have been proposed as carriers of anti-tumoural drugs, for their low toxicity and surface characteristics make them suitable for either imaging (gamma-scintigraphy) or therapy upon encapsulation of cytotoxic drugs. Assessment of inhaled radiolabelled SLN biodistribution is described in the present work. Methods : Nanoparticles (200 nm) were radiolabelled with 99m Tc using the lipophilic chelator d, l -hexamehylpropyleneamine oxime (HMPAO). Biodistribution studies were carried out following aerosolisation and administration of a 99m Tc-HMPAO-SLN suspension to a group of adult male Wistar rats. A 60 min dynamic image acquisition was performed in a gamma-camera, followed by static image collection at 30 min intervals up to 4 h postinhalation. Radiation counting was performed in ...

204 citations

Journal Article
Melike Üner1
TL;DR: In this article, the authors reviewed the production techniques, characterization and physical stability of these systems including destabilizing factors and principles of drug loading, then considered aspects and benefits of SLN and NLC as colloidal drug carriers.
Abstract: Solid lipid nanoparticles (SLN) have attracted increasing attention by various research groups and companies since the early 1990s. Their advantages over existing traditional carriers have been clearly documented. In addition, modified SLN have been described which are nanostructured lipid carriers (NLC) composed of liquid lipid blended with a solid lipid to form a nanostructured solid particle matrix. NLC combine controlled release characteristics with some advantages over SLN. This paper reviews the production techniques, characterization and physical stability of these systems including destabilizing factors and principles of drug loading, then considers aspects and benefits of SLN and NLC as colloidal drug carriers.

203 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226