scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: The superiority of the CMS nanotransporters seems to be attributed to the character of the nanoparticles and not to its smaller size.

109 citations

Journal Article
TL;DR: Fairly spherical shaped, stable and controlled release DOM-SLN and DOM-NLC could be prepared by hot homogenization followed by ultrasonication technique and subjected to stability study, indicating the developed SLN and NLC were fairly stable.
Abstract: BACKGROUND AND THE PURPOSE OF THE STUDY Domperidone (DOM) is a dopamine- receptor (D(2)) antagonist, widely used in the treatment of motion-sickness. The pharmacokinetic parameters of DOM make it a suitable candidate for development of Solid Lipid Nanoparticle (SLN) and Nanostructured Lipide Carrier (NLC). The purpose of the present investigation was to prepare and evaluate DOM loaded solid lipid nanoparticles (DOM-SLN) and DOM loaded nanostructured lipid carriers (DOM-NLC). METHODS DOM loaded SLN and NLC were prepared by hot homogenization followed by ultrasonication technique, using trimyristin as solid lipid, cetyl recinoleate as liquid lipid and a mixture of soy phosphatidylcholine (99%) and tween 80 as surfactant. SLN and NLC were characterized for particle size, polydispersity index (PDI), zeta potential and entrapment efficiency. The effects of composition of lipid materials and surfactant mixture on the particle size, PDI, zeta potential, drug entrapment efficiency, and in vitro drug release behavior were investigated. DSC analysis was performed to characterize the state of drug and lipid modification. Shape and surface morphology were determined by transmission electron microscopy (TEM). SLN and NLC formulations were subjected to stability study over a period of 40 days. RESULTS The mean particle size, PDI, zeta potential and entrapment efficiency of optimized SLN (SLN1) and NLC were found to be 30.45 nm, 0.156, 12.40 mV, 87.84% and 32.23 nm, 0.160, 10.47 mV, 90.49% respectively. DSC studies revealed that DOM was in an amorphous state and triglycerides were in the β prime form in SLN and NLC. Shape and surface morphology was determined by TEM revealed fairly spherical shape of nanoparticles. In vitro release studies demonstrated that both the SLN and NLC formulations possessed a controlled release over a period of 24 hrs. SLN and NLC formulations were subjected to stability over a period of 40 days. There was no significant (P<0.05) change in particle size, zeta potential, PDI and entrapment efficiency indicating the developed SLN and NLC were fairly stable. CONCLUSION Fairly spherical shaped, stable and controlled release DOM-SLN and DOM-NLC could be prepared by hot homogenization followed by ultrasonication technique.

109 citations

Journal Article
TL;DR: The aim of the present study was to investigate the moisturizing potential of AP in SLN and NLC incorporated into hydrogel as colloidal carrier systems, and found that AP incorporation moisturized skin significantly better than placebo in short-term and long-term trials.
Abstract: This study was performed as a complimentary to our previous study regarding the chemical stability of ascorbyl palmitate (AP) in solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and for comparison, in nanoemulsion (NE) incorporated into a hydrogel produced by high pressure homogenization. AP is known as an effective antioxidant that protects tissue integrity similar to vitamin C. Recently, its moisturizing activity in conventional topical formulations was found to be high. The aim of the present study was to investigate the moisturizing potential of AP in SLN and NLC incorporated into hydrogel as colloidal carrier systems. It has been known that SLN and NLC have occlusive effects, but AP incorporation moisturized skin significantly better than placebo in short-term (p < 0.001) and long-term trials (p < 0.01) for both SLN and NLC. In the second part of the study, SLN and NLC were found to sustain the penetration of AP through excised human skin about 1/2 and 2/3 times compared to NE (p < 0.001 and p < 0.01), respectively, due to the solid state of Witepsol E85 in the lipid phase.

108 citations

Journal ArticleDOI
TL;DR: This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Abstract: Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.

108 citations

Journal ArticleDOI
TL;DR: Findings augur well with the possibility of enhancement of the oral bioavailability of drug, via the lymphatic system bypassing hepatic first pass metabolism, via a combination of particle size as well as reduction in hydrophobicity of SLNs.
Abstract: The present work aimed to investigate the effect of different concentrations of poloxamer 188, a surfactant, on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles (SLNs) for oral bioavailability enhancement. Microemulsion technique was employed to prepare the SLN formulations having varying concentrations of poloxamer 188, which were subsequently subjected to various in vitro and in vivo evaluations to study their release pattern. On increasing the percentage concentration of poloxamer 188, the bioavailability decreased from 4.91- to 2.84-fold after intraduodenal administration in the male Wister rat. It could be attributed to the increase in particle size as well as reduction in hydrophobicity of SLNs. As indicated by pharmacokinetic data, the AUC(0-t) of all three (SLN) formulations (6.27 +/- 0.24 microgh/mL with FZ-1, 4.13 +/- 0.11 microgh/mL with FZ-2, and 3.63 +/- 0.10 microgh/mL with FZ-3) were significantly higher (p < 0.05) than that of carvedilol suspension (1.27 +/- 0.23 microgh/mL). These findings augur well with the possibility of enhancement of the oral bioavailability of drug, via the lymphatic system bypassing hepatic first pass metabolism.

108 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226