scispace - formally typeset
Search or ask a question
Topic

Solid lipid nanoparticle

About: Solid lipid nanoparticle is a research topic. Over the lifetime, 3175 publications have been published within this topic receiving 127912 citations. The topic is also known as: LNP & SLN.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a bird's eye view on various aspects of lipid nanoparticles as carriers of bioactive molecules that is, synthesis, characterization, advantage, disadvantage, toxicity, and application in the medical field.
Abstract: Nanotechnology has made a great impact on the pharmaceutical, biotechnology, food, and cosmetics industries. More than 40% of the approved drugs are lipophilic and have poor solubility. This is the major rate-limiting step that influences the release profile and bioavailability of drugs. Several approaches have been reported to administer lipophilic drugs with improved solubility and bioavailability. Nanotechnology plays a crucial role in the targeted delivery of poorly soluble drugs. Nanotechnology-based drug delivery systems can be classified as solid lipid nanoparticulate drug delivery systems, emulsion-based nanodrug delivery systems, vesicular drug delivery systems, etc. Nanotechnology presents a new frontier in research and development to conquer the limitations coupled with the conventional drug delivery systems through the formation of specific functionalized particles. This review presents a bird's eye view on various aspects of lipid nanoparticles as carriers of bioactive molecules that is, synthesis, characterization, advantage, disadvantage, toxicity, and application in the medical field. Update on recent development in terms of patents and clinical trials of solid lipid nanoparticles (SLNs) and nanostructure lipid carriers (NLCs) have also been discussed in this article.

80 citations

Journal ArticleDOI
TL;DR: PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of pac litaxel as observed by in vivo toxicity studies.
Abstract: The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.

80 citations

Journal ArticleDOI
TL;DR: Eugenol loaded solid lipid nanoparticles was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity and the in vivo study results indicate improvement in the antif fungus activity of eugenol.

80 citations

Journal ArticleDOI
TL;DR: SLN of theobroma oil containing phospholipid could prove to be a good ocular or parenteral drug delivery system considering the low particle size, particle size stability and in vivo tolerability of the component lipids.

80 citations

Journal ArticleDOI
TL;DR: It can be concluded that SLNs provide good skin permeation for SP and may be a promising carrier for topical delivery of spironolactone offering the biphasic release pattern that might be interesting for topical application resulting in an effective treatment for skin disorders such as acne.

79 citations


Network Information
Related Topics (5)
Drug carrier
18.2K papers, 997.7K citations
90% related
Drug delivery
49.7K papers, 1.8M citations
90% related
Micelle
35.1K papers, 1M citations
79% related
Self-healing hydrogels
34.9K papers, 1.2M citations
77% related
Nanoparticle
85.9K papers, 2.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022446
2021242
2020254
2019237
2018226