scispace - formally typeset
Search or ask a question
Topic

Solid-state fermentation

About: Solid-state fermentation is a research topic. Over the lifetime, 5311 publications have been published within this topic receiving 113337 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A kinetic model of solid state fermentation with temperature deactivation of microorganisms is presented in this paper, where the experimental results of cultivation of Aspergillus niger on a mixture of wheat bran and beet pulp in temperature range from 26 °C to 40 °C were used to estimate the parameters of the model.
Abstract: A kinetic model of solid state fermentation with temperature deactivation of microorganisms is presented. The experimental results of cultivation of Aspergillus niger on a mixture of wheat bran and beet pulp in temperature range from 26 °C to 40 °C were used to estimate the parameters of the model. The activation energies of growth, thermal deactivation and maintenance have been calculated.

55 citations

Journal ArticleDOI
TL;DR: The respirometric analyses of the fermentation showed a strong correlation between fungal growth and spore production and Beauveria bassiana by Solid-State Fermentation.
Abstract: The purpose of this work was to produce Beauveria bassiana by Solid-State Fermentation using agro-industrial residues and optimizing the cultivation conditions. Refused potatoes, coffee husks and sugar-cane bagasse were tested. The blend of refused potatoes and sugar-cane bagasse (60-40%) with particle size in the range of 0.8-2 mm was used in the fermentation experiments. In Erlenmeyer flasks the best spore production was achieved with the following conditions: incubation temperature 26o C; initial pH 6.0; inoculum concentration 107 spores.g-1.dw and initial moisture 75%. In the column type reactor using forced aeration under the optimized conditions, the maximum production (1.07x1010spores.g-1.dw) was obtained at the 10th day of fermentation. The respirometric analyses of the fermentation showed a strong correlation between fungal growth and spore production.

55 citations

Journal ArticleDOI
TL;DR: The extremely alkaliphilic bacterial strain PPKS-2 can be effectively used for solid waste management of poultry feather in submerged as well as solid-state fermentation and was effectively used to remove hair from goat hide.
Abstract: An extremely alkaliphilic bacterial strain, Bacillus sp. PPKS-2, was isolated from rice mill effluents and screened for the production of extracellular keratinase. The maximum production of keratinase occurred after 48 h in shaking culture at pH 11.0 and 37 degrees C in a medium containing 0.5% soybean flour. The strain grew and produced alkaline keratinase using chicken feather and horn meal as the sole source of carbon and nitrogen. An addition of 0.1% soybean flour or feather hydrolysate and sodium sulfite to feather medium increased the production and complete solubilization of feather took place within 5 days under solid-state fermentation conditions. The partially purified enzyme displayed maximum activity at pH 11.0 and 60 degrees C in a broad range of NaCl, 0-16%, and was not inhibited by sodium dodecyl sulfate (10%), ethylenediaminetetraacetic acid (10 mM), H2O2 (15%), and other commercial detergents. Immobilization of the whole cells proved to be useful for continuous production of keratinase and feather degradation. The enzyme was effectively used to remove hair from goat hide. The strain PPKS-2 can be effectively used for solid waste management of poultry feather in submerged as well as solid-state fermentation.

55 citations

Journal ArticleDOI
TL;DR: The improvement achieved by the SSF system was investigated by comparing it to a submerged fermentation system (SmF), both experimentally and by using a standard theoretical model along with a parameter sensitivity analysis, and laccase production in SSF was found to be twice of that in SmF.
Abstract: A solid-state fermentation (SSF) system for production of an industrially important enzyme laccase by Pleurotus ostreatus was developed by using potato dextrose yeast extract medium and polyurethane foam as a supporting material. The maximum laccase production in the SSF system was as high as 3�105 U/L. Addition of inducers, such as copper and ferulic acid, further enhanced the laccase production in SSF. Moreover, the time required for the maximum laccase production was reduced to 6 days compared to 10 days reported earlier. The improvement achieved by the SSF system was investigated by comparing it to a submerged fermentation system (SmF), both experimentally and by using a standard theoretical model along with a parameter sensitivity analysis. Laccase production in SSF was found to be twice of that in SmF. One of the main reasons for higher laccase production in SSF compared to SmF was possibly due to the presence of higher proteolytic activity in SmF. Strong proteolytic activity in SmF presumably caused subsequent laccase degradation, which lowered the ultimate laccase production in SmF compared to SSF.

54 citations

Journal ArticleDOI
TL;DR: A combined submerged to solid state fermentation strategy was studied using the edible filamentous fungus Neurospora intermedia to biotransform ethanol plant residues 'thin stillage' and waste bread as substrates for the production of additional ethanol, biomass and a feed product rich in pigment.

54 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
89% related
Cellulase
16.1K papers, 479.5K citations
87% related
DPPH
30.1K papers, 759.9K citations
82% related
Bacillus subtilis
19.6K papers, 539.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023196
2022382
2021208
2020266
2019293
2018306