scispace - formally typeset
Search or ask a question
Topic

Solid-state fermentation

About: Solid-state fermentation is a research topic. Over the lifetime, 5311 publications have been published within this topic receiving 113337 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Starchy agricultural wastes were inoculated with amylolytic yeasts for protein enrichment by solid-state fermentation and the final product contained 16.11-20.82% protein.
Abstract: Starchy agricultural wastes were inoculated with amylolytic yeasts for protein enrichment by solid-state fermentation. The moisture content of substrate was 65-69%, and water activity was equivalent to 0.98-0.99. The optimum conditions for protein enrichment were initial moisture content 65%, initial pH 4.5, a 1:1 mixture of ammonium sulfate and urea was incrementally added to the ferment with 1% added at zero time, 1% added at 24 h, and 0.5% added at 48 h, and incubation with amylolytic yeasts (1.0 x 10(10)/100 g substrate) at 30 degrees C for 2-3 days. The final product contained 16.11-20.82% protein.

50 citations

Journal ArticleDOI
TL;DR: Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum production of feruloyl esterase, xylanase, and α-l-arabinofuranosidase by the fungus Penicillium brasilianum grown on brewer’s spent grain under solid-state fermentation.
Abstract: The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer’s spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum production of feruloyl esterase, xylanase, and α-l-arabinofuranosidase. Under the optimum growth conditions (80% moisture, pH 6, 26.5°C, and 5 g/l nitrogen source), the maximum level of feruloyl esterase (1,542 mU/g BSG) was found after 196 h, whereas xylanase (709 U/g BSG) and ArabF activity (3,567 mU/g BSG) were maximal after 108 h and 96 h, respectively. Based on substrate utilization data, the feruloyl esterases produced by P. brasilianum was anticipated to subclass B. A crude enzyme (CE) preparation from P. brasilianum culture grown on BSG was tested for the release of hydroxycinnamic acids and pentoses from BSG. The P. brasilianum CE produced in this work contains a balance of cell wall-modifying enzymes capable of degrading arabinoxylan of BSG by more than 40%.

50 citations

Journal ArticleDOI
TL;DR: In this article, wheat bran, among various agro industrial by products, screened for the production of polygalacturonase (PG) in solid-state fermentation of Aspergillus sojae mutant strain, was found to be the most suitable substrate without the addition of any nutritive or inducing supplement.

50 citations

Journal ArticleDOI
TL;DR: It is evident that cow dung is a potential substrate for the production of a detergent-stable, dehairing protease by B. subtilis, which has a lot of potential applications in the detergent and leather-processing industries.
Abstract: Cow dung, a cheap and easily available source of energy, was used as the substrate for the production of alkaline protease by solid-state fermentation using the Bacillus subtilis strain VV. In order to achieve the maximum yield of this enzyme, the following optimum process parameters are needed: fermentation period (72 h), pH (10.0), moisture content (140%), inoculum (25%), temperature (30–40°C), carbon source (2% (w/w) maltose) and nitrogen source (1% (w/w) urea). The protease was stable over a broad temperature range (30–50°C) and pH (8.0-10.0), with maximum activity at 50°C and pH 10.0. Among the divalent ions tested, Ca2+ (0.01 M) increased enzyme activity. The purified protease, after being subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was found to have a molecular mass of 38.5 kDa. The enzyme was solvent-and surfactant-stable and showed activity even after 24 h incubation along with various commercially available detergents. This enzyme possessed dehairing properties for animal hide after 16 h of incubation at room temperature. From these results it is evident that cow dung is a potential substrate for the production of a detergent-stable, dehairing protease by B. subtilis. This enzyme has a lot of potential applications in the detergent and leather-processing industries.

50 citations

Journal ArticleDOI
TL;DR: Results demonstrate how to add value to a toxic and worthless residue through the production of lipases with distinct characteristics, produced through a low cost methodology, which can be applied in different areas of biotechnology.
Abstract: In countries with a strong agricultural base, such as Brazil, the generation of solid residues is very high. In some cases, these wastes present no utility due to their toxic and allergenic compounds, and so are an environmental concern. The castor bean (Ricinus communis) is a promising candidate for biodiesel production. From the biodiesel production process developed in the Petrobras Research Center using castor bean seeds, a toxic and alkaline waste is produced. The use of agroindustrial wastes in solid-state fermentation (SSF) is a very interesting alternative for obtaining enzymes at low cost. Therefore, in this work, castor bean waste was used, without any treatment, as a culture medium for fungal growth and lipase production. The fungus Penicillium simplicissimum was able to grow and produce an enzyme in this waste. In order to maximize the enzyme production, two sequential designs–Plackett-Burman (variable screening) followed by central composite rotatable design (CCRD)—were carried out, attaining a considerable increase in lipase production, reaching an activity of 155.0 U/g after 96 h of fermentation. The use of experimental design strategy was efficient, leading to an increase of 340% in the lipase production. Zymography showed the presence of different lipases in the crude extract. The partial characterization of such extract showed the occurrence of two lipase pools with distinct characteristics of pH and temperature of action: one group with optimal action at pH 6.5 and 45°C and another one at pH 9.0 and 25°C. These results demonstrate how to add value to a toxic and worthless residue through the production of lipases with distinct characteristics. This pool of enzymes, produced through a low cost methodology, can be applied in different areas of biotechnology.

50 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
89% related
Cellulase
16.1K papers, 479.5K citations
87% related
DPPH
30.1K papers, 759.9K citations
82% related
Bacillus subtilis
19.6K papers, 539.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023196
2022382
2021208
2020266
2019293
2018306