scispace - formally typeset
Search or ask a question
Topic

Solow residual

About: Solow residual is a research topic. Over the lifetime, 831 publications have been published within this topic receiving 89077 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a fully specified model of long-run growth in which knowledge is assumed to be an input in production that has increasing marginal productivity, which is essentially a competitive equilibrium model with endogenous technological change.
Abstract: This paper presents a fully specified model of long-run growth in which knowledge is assumed to be an input in production that has increasing marginal productivity. It is essentially a competitive equilibrium model with endogenous technological change. In contrast to models based on diminishing returns, growth rates can be increasing over time, the effects of small disturbances can be amplified by the actions of private agents, and large countries may always grow faster than small countries. Long-run evidence is offered in support of the empirical relevance of these possibilities.

18,200 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the prospects for constructing a neoclassical theory of growth and international trade that is consistent with some of the main features of economic development, and compare three models and compared to evidence.

16,965 citations

Journal ArticleDOI
TL;DR: The authors examined whether the Solow growth model is consistent with the international variation in the standard of living, and they showed that an augmented Solow model that includes accumulation of human as well as physical capital provides an excellent description of the cross-country data.
Abstract: This paper examines whether the Solow growth model is consistent with the international variation in the standard of living. It shows that an augmented Solow model that includes accumulation of human as well as physical capital provides an excellent description of the cross-country data. The paper also examines the implications of the Solow model for convergence in standards of living, that is, for whether poor countries tend to grow faster than rich countries. The evidence indicates that, holding population growth and capital accumulation constant, countries converge at about the rate the augmented Solow model predicts. This paper takes Robert Solow seriously. In his classic 1956 article Solow proposed that we begin the study of economic growth by assuming a standard neoclassical production function with decreasing returns to capital. Taking the rates of saving and population growth as exogenous, he showed that these two vari- ables determine the steady-state level of income per capita. Be- cause saving and population growth rates vary across countries, different countries reach different steady states. Solow's model gives simple testable predictions about how these variables influ- ence the steady-state level of income. The higher the rate of saving, the richer the country. The higher the rate of population growth, the poorer the country. This paper argues that the predictions of the Solow model are, to a first approximation, consistent with the evidence. Examining recently available data for a large set of countries, we find that saving and population growth affect income in the directions that Solow predicted. Moreover, more than half of the cross-country variation in income per capita can be explained by these two variables alone. Yet all is not right for the Solow model. Although the model correctly predicts the directions of the effects of saving and

14,402 citations

Journal ArticleDOI
TL;DR: This paper showed that differences in physical capital and educational attainment can only partially explain the variation in output per worker, and that a large amount of variation in the level of the Solow residual across countries is driven by differences in institutions and government policies.
Abstract: Output per worker varies enormously across countries. Why? On an accounting basis, our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker--we find a large amount of variation in the level of the Solow residual across countries. At a deeper level, we document that the differences in capital accumulation, productivity, and therefore output per worker are driven by differences in institutions and government policies, which we call social infrastructure. We treat social infrastructure as endogenous, determined historically by location and other factors captured in part by language.

7,208 citations

Journal ArticleDOI
TL;DR: This article showed that the differences in capital accumulation, productivity, and therefore output per worker are driven by differences in institutions and government policies, which are referred to as social infrastructure and called social infrastructure as endogenous, determined historically by location and other factors captured by language.
Abstract: Output per worker varies enormously across countries. Why? On an accounting basis our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker—we find a large amount of variation in the level of the Solow residual across countries. At a deeper level, we document that the differences in capital accumulation, productivity, and therefore output per worker are driven by differences in institutions and government policies, which we call social infrastructure. We treat social infrastructure as endogenous, determined historically by location and other factors captured in part by language. In 1988 output per worker in the United States was more than 35 times higher than output per worker in Niger. In just over ten days the average worker in the United States produced as much as an average worker in Niger produced in an entire year. Explaining such vast differences in economic performance is one of the fundamental challenges of economics. Analysis based on an aggregate production function provides some insight into these differences, an approach taken by Mankiw, Romer, and Weil [1992] and Dougherty and Jorgenson [1996], among others. Differences among countries can be attributed to differences in human capital, physical capital, and productivity. Building on their analysis, our results suggest that differences in each element of the production function are important. In particular, however, our results emphasize the key role played by productivity. For example, consider the 35-fold difference in output per worker between the United States and Niger. Different capital intensities in the two countries contributed a factor of 1.5 to the income differences, while different levels of educational attainment contributed a factor of 3.1. The remaining difference—a factor of 7.7—remains as the productivity residual. * A previous version of this paper was circulated under the title ‘‘The Productivity of Nations.’’ This research was supported by the Center for Economic Policy Research at Stanford and by the National Science Foundation under grants SBR-9410039 (Hall) and SBR-9510916 (Jones) and is part of the National Bureau of Economic Research’s program on Economic Fluctuations and Growth. We thank Bobby Sinclair for excellent research assistance and colleagues too numerous to list for an outpouring of helpful commentary. Data used in the paper are available online from http://www.stanford.edu/,chadj.

6,454 citations


Network Information
Related Topics (5)
Monetary policy
57.8K papers, 1.2M citations
83% related
Interest rate
47K papers, 1M citations
83% related
Productivity
86.9K papers, 1.8M citations
81% related
Exchange rate
47.2K papers, 944.5K citations
80% related
Wage
47.9K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
20226
20219
202012
201914
201811