scispace - formally typeset
Search or ask a question
Topic

Solvation

About: Solvation is a research topic. Over the lifetime, 21552 publications have been published within this topic receiving 746525 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals.
Abstract: New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volume...

13,164 citations

Journal ArticleDOI
TL;DR: Weiner et al. as mentioned in this paper derived a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases.
Abstract: We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases. This effective two-body force field is the successor to the Weiner et al. force field and was developed with some of the same philosophies, such as the use of a simple diagonal potential function and electrostatic potential fit atom centered charges. The need for a 10-12 function for representing hydrogen bonds is no longer necessary due to the improved performance of the new charge model and new van der Waals parameters. These new charges are determined using a 6-31G* basis set and restrained electrostatic potential (RESP) fitting and have been shown to reproduce interaction energies, free energies of solvation, and conformational energies of simple small molecules to a good degree of accuracy. Furthermore, the new RESP charges exhibit less variability as a function of the molecular conformation used in the charge determination. The new van der Waals parameters have been derived from liquid simulations and include hydrogen parameters which take into account the effects of any geminal electronegative atoms. The bonded parameters developed by Weiner et al. were modified as necessary to reproduce experimental vibrational frequencies and structures. Most of the simple dihedral parameters have been retained from Weiner et al., but a complex set of 4 and yj parameters which do a good job of reproducing the energies of the low-energy conformations of glycyl and alanyl dipeptides has been developed for the peptide backbone.

12,660 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
TL;DR: In this paper, a new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented, which allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered.
Abstract: A new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented. It allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered. The calculated solvation energies for 19 neutral molecules in water are found in very good agreement with experimental data; the solvent-induced geometry relaxation is studied for some closed and open shell molecules, at HF and DF levels. The computational times are very satisfying: the self-consistent energy evaluation needs a time 15−30% longer than the corresponding procedure in vacuo, whereas the calculation of energy gradients is only 25% longer than in vacuo for medium size molecules.

7,616 citations

Journal ArticleDOI
TL;DR: The conductor‐like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in solution for any chemical system that can be studied in vacuo.
Abstract: The conductor-like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in solution for any chemical system that can be studied in vacuo Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute A number of test applications are presented to evaluate the performances of the method

6,448 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
92% related
Ionic liquid
57.2K papers, 1.6M citations
89% related
Hydrogen bond
57.7K papers, 1.3M citations
89% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Alkyl
223.5K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023785
20221,477
2021729
2020642
2019640
2018625