scispace - formally typeset
Search or ask a question

Showing papers on "Somatosensory system published in 2008"


Journal ArticleDOI
14 Aug 2008-Nature
TL;DR: It is shown that an internal brain state dynamically regulates cortical membrane potential synchrony during behaviour and defines different modes of cortical processing in behaving mice.
Abstract: Internal brain states form key determinants for sensory perception, sensorimotor coordination and learning. A prominent reflection of different brain states in the mammalian central nervous system is the presence of distinct patterns of cortical synchrony, as revealed by extracellular recordings of the electroencephalogram, local field potential and action potentials. Such temporal correlations of cortical activity are thought to be fundamental mechanisms of neuronal computation. However, it is unknown how cortical synchrony is reflected in the intracellular membrane potential (V(m)) dynamics of behaving animals. Here we show, using dual whole-cell recordings from layer 2/3 primary somatosensory barrel cortex in behaving mice, that the V(m) of nearby neurons is highly correlated during quiet wakefulness. However, when the mouse is whisking, an internally generated state change reduces the V(m) correlation, resulting in a desynchronized local field potential and electroencephalogram. Action potential activity was sparse during both quiet wakefulness and active whisking. Single action potentials were driven by a large, brief and specific excitatory input that was not present in the V(m) of neighbouring cells. Action potential initiation occurs with a higher signal-to-noise ratio during active whisking than during quiet periods. Therefore, we show that an internal brain state dynamically regulates cortical membrane potential synchrony during behaviour and defines different modes of cortical processing.

863 citations


Journal ArticleDOI
TL;DR: Using simultaneous intracellular recordings in pairs of nearby neurons in vivo, it is found that excitatory and inhibitory inputs are continuously synchronized and correlated in strength during spontaneous and sensory-evoked activities in the rat somatosensory cortex.
Abstract: Temporal and quantitative relations between excitatory and inhibitory inputs in the cortex are central to its activity, yet they remain poorly understood. In particular, a controversy exists regarding the extent of correlation between cortical excitation and inhibition. Using simultaneous intracellular recordings in pairs of nearby neurons in vivo, we found that excitatory and inhibitory inputs are continuously synchronized and correlated in strength during spontaneous and sensory-evoked activities in the rat somatosensory cortex.

669 citations


Journal ArticleDOI
03 Jan 2008-Nature
TL;DR: It is shown that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task, and single neuron activity can cause a change in the animal’s detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.
Abstract: Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.

424 citations


Journal ArticleDOI
TL;DR: Using in vivo electrophysiological and anatomical approaches in the rat, it is found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area.
Abstract: Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

412 citations


Journal ArticleDOI
TL;DR: It is found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.

307 citations


Journal ArticleDOI
TL;DR: The different somatosensory modalities showed only slight agreement between impairment within the same body areas, suggesting that the modalities are independent of each other and all should be assessed.
Abstract: Objective: To investigate the frequency of somatosensory impairment in stroke patients within different somatosensory modalities and different body areas, and their recovery.Design: Prospective observational study.Setting: Two stroke rehabilitation units.Subjects: Seventy patients with a first stroke (36 men, 34 women; average age, 71, SD 10.00 years; average time since stroke onset, 15 days) were assessed on admission and two, four and six months after stroke.Interventions: Not applicable.Main measure: Nottingham Sensory Assessment.Results: Somatosensory impairment was common after stroke; 7—53% had impaired tactile sensations, 31—89% impaired stereognosis, and 34—64% impaired proprioception. When comparing somatosensory modalities within body areas the kappa values were low (kappa values <0.54). Recovery occurred over time, though not significantly in lower limb tactile sensations. Stroke severity was the main factor influencing initial somatosensory impairment, but accounted for a small amount of the v...

296 citations


Journal ArticleDOI
01 Oct 2008-Brain
TL;DR: The patterns of activations and deactivations during caloric and galvanic vestibular stimulations in healthy subjects have been compared with those in patients with acute and chronic peripheral and central Vestibular disorders, and the hypothesis that the (para-) flocculus and tonsil play a crucial role in DBN is supported.
Abstract: This review summarizes our current knowledge of multisensory vestibular structures and their functions in humans. Most of it derives from brain activation studies with PET and fMRI conducted over the last decade. The patterns of activations and deactivations during caloric and galvanic vestibular stimulations in healthy subjects have been compared with those in patients with acute and chronic peripheral and central vestibular disorders. Major findings are the following: (1) In patients with vestibular neuritis the central vestibular system exhibits a spontaneous visual-vestibular activation–deactivation pattern similar to that described in healthy volunteers during unilateral vestibular stimulation. In the acute stage of the disease regional cerebral glucose metabolism (rCGM) increases in the multisensory vestibular cortical and subcortical areas, but simultaneously it significantly decreases in the visual and somatosensory cortex areas. (2) In patients with bilateral vestibular failure the activation–deactivation pattern during vestibular caloric stimulation shows a decrease of activations and deactivations. (3) Patients with lesions of the vestibular nuclei due to Wallenberg's syndrome show no activation or significantly reduced activation in the contralateral hemisphere during caloric irrigation of the ear ipsilateral to the lesioned side, but the activation pattern in the ipsilateral hemisphere appears ‘normal’. These findings indicate that there are bilateral ascending vestibular pathways from the vestibular nuclei to the vestibular cortex areas, and the contralateral tract crossing them is predominantly affected. (4) Patients with posterolateral thalamic infarctions exhibit significantly reduced activation of the multisensory vestibular cortex in the ipsilateral hemisphere, if the ear ipsilateral to the thalamic lesion is stimulated. Activation of similar areas in the contralateral hemisphere is also diminished but to a lesser extent. These data demonstrate the functional importance of the posterolateral thalamus as a vestibular gatekeeper. (5) In patients with vestibulocerebellar lesions due to a bilateral floccular deficiency, which causes downbeat nystagmus (DBN), PET scans reveal that rCGM is reduced in the region of the cerebellar tonsil and flocculus/paraflocculus bilaterally. Treatment with 4-aminopyridine lessens this hypometabolism and significantly improves DBN. These findings support the hypothesis that the (para-) flocculus and tonsil play a crucial role in DBN. Although we can now for the first time attribute particular activations and deactivations to functional deficits in distinct vestibular disorders, the complex puzzle of the various multisensory and sensorimotor functions of the phylogenetically ancient vestibular system is only slowly being unraveled.

276 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the perception of pain in others modulates neural activity in primary somatosensory cortex and supports the idea that the Perception ofPain in others elicits subtle somatoensory activity that may be difficult to detect by fMRI techniques.

239 citations


Journal ArticleDOI
TL;DR: It is found that ensembles of rat olfactory bulb neurons decorrelate complex mixtures that vary by as little as a single missing component, whereas olfatory (piriform) cortical neural ensemble perform pattern completion in response to an absent component, essentially filling in the missing information and allowing perceptual stability.
Abstract: No two roses smell exactly alike, but our brain accurately bundles these variations into a single percept 'rose'. We found that ensembles of rat olfactory bulb neurons decorrelate complex mixtures that vary by as little as a single missing component, whereas olfactory (piriform) cortical neural ensembles perform pattern completion in response to an absent component, essentially filling in the missing information and allowing perceptual stability. This piriform cortical ensemble activity predicts olfactory perception.

206 citations


Journal ArticleDOI
TL;DR: It is proposed that this early somatotopic "glimpse" arises from the initial feed-forward sweep of neural activity to the primary somatosensory cortex, whereas the later externally-based, conscious experience reflects the activity of a somatoensory network involving recurrent connections from association areas.

203 citations


Journal ArticleDOI
TL;DR: It is indicated that Fmr1 shapes sensory cortical circuits during a developmental critical period by investigating the development of excitatory projections in the barrel cortex of FMR1 ko mice.
Abstract: Silencing of the Fmr1 gene causes fragile X syndrome Although defects in synaptic plasticity in the cerebral cortex have been linked to cognitive impairments in Fmr1 knock-out (ko) mice, the specific cortical circuits affected in the syndrome are unknown Here, we investigated the development of excitatory projections in the barrel cortex of Fmr1 ko mice In 2-week-old Fmr1 ko mice, a major ascending projection connecting layer 4 (L4) to L3 (L4-->L3), was defective in multiple and independent ways: its strength was reduced, caused by a lower connection probability; the axonal arbors of L4 cells were spatially diffuse in L2/3; the L4-->L3 projection did not show experience-dependent plasticity By 3 weeks, the strength of the L4-->L3 projection was similar to that of wild type Our data indicate that Fmr1 shapes sensory cortical circuits during a developmental critical period

Journal ArticleDOI
TL;DR: It is concluded that STSms is important for integrating information from the somatosensory as well as the auditory and visual modalities, and could be the human homolog of macaque STP.

Journal ArticleDOI
TL;DR: A human functional magnetic resonance imaging study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally corroborates and elaborates previous suggestions of specialized visuo‐haptic processing of texture and shape.
Abstract: Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape.

Journal ArticleDOI
TL;DR: The anatomical, physiological and behavioral changes that take place in response to injury-induced plasticity after damage to the dorsal column pathway in rats and monkeys are discussed and functional collateral sprouting has been promoted by the post-lesion digestion of the perineuronal net in the cuneate nucleus.

Journal ArticleDOI
TL;DR: The results demonstrate that cathodal tDCS significantly diminished pain perception and the amplitude of the N2 component when the contralateral hand to the side of tDCS was laser-stimulated, whereas anodal and sham stimulation conditions had no significant effect.
Abstract: Objective: Multiple cortical areas including the primary somatosensory cortex are known to be involved in nociception. The aim of this study was to investigate the effect of transcranial direct current stimulation (tDCS) that modulates the cortical excitability painlessly and noninvasively, over somatosensory cortex on acute pain perception induced with a Tm:YAG laser. Methods: Subjective pain rating scores and amplitude changes of the N1, N2, and P2 components of laser-evoked potentials of 10 healthy participants were analyzed before and after anodal, cathodal, and sham tDCS. Results: Our results demonstrate that cathodal tDCS significantly diminished pain perception and the amplitude of the N2 component when the contralateral hand to the side of tDCS was laser-stimulated, whereas anodal and sham stimulation conditions had no significant effect. Discussion: Our study highlights the antinociceptive effect of this technique and may contribute to the understanding of the mechanisms underlying pain relief. The pharmacologic prolongation of the excitability-diminishing after-effects would render the method applicable to different patient populations with chronic pain.

Journal ArticleDOI
TL;DR: The epidermis can be considered a true sensory tissue where sensor proteins and neurone-like properties enable epidermal cells to participate in the skin surface perception through interactions with nerve fibres.
Abstract: The skin is an efficient barrier which protects our bodies from the external environment but it is also an important site for the perception of various stimuli. Sensory neurones of the peripheral nervous system send many primary afferent fibres to the skin. They pass through the dermis and penetrate the basement membrane to innervate epidermal cells or remain as free endings. Nerve fibres are clearly involved in somatosensation. However, they are not always so numerous, for example in distal parts of the limbs, and some kinds of sensors can be at a distance of hundreds of micrometers from each other. The skin can detect patterns at a very fine and smaller scale, which suggests that nerve terminals are helped by epidermal sensors. All epidermal cells (keratinocytes, melanocytes, Langerhans cells and Merkel cells) express sensor proteins and neuropeptides regulating the neuro-immuno-cutaneous system. Hence, they must play a part in the epidermal sensory system. This review will consider the epidermal components of this forefront sensory system and the stimulations they perceive. The epidermis can be considered a true sensory tissue where sensor proteins and neurone-like properties enable epidermal cells to participate in the skin surface perception through interactions with nerve fibres.

Journal ArticleDOI
TL;DR: Previously unreported forms of plasticity indicate that in adult animals, seemingly hardwired cortical neurons first adopt wider functional roles as they develop strategies to compensate for loss of specific sensory modalities after forms of brain damage such as stroke.
Abstract: Functional mapping and microstimulation studies suggest that recovery after stroke damage can be attributed to surviving brain regions taking on the functional roles of lost tissues. Although this model is well supported by data, it is not clear how activity in single neurons is altered in relation to cortical functional maps. It is conceivable that individual surviving neurons could adopt new roles at the expense of their usual function. Alternatively, neurons that contribute to recovery may take on multiple functions and exhibit a wider repertoire of neuronal processing. In vivo two-photon calcium imaging was used in adult mice within reorganized forelimb and hindlimb somatosensory functional maps to determine how the response properties of individual neurons and glia were altered during recovery from ischemic damage over a period of 2-8 weeks. Single-cell calcium imaging revealed that the limb selectivity of individual neurons was altered during recovery from ischemia, such that neurons normally selective for a single contralateral limb processed information from multiple limbs. Altered limb selectivity was most prominent in border regions between stroke-altered forelimb and hindlimb macroscopic map representations, and peaked 1 month after the targeted insult. Two months after stroke, individual neurons near the center of reorganized functional areas became more selective for a preferred limb. These previously unreported forms of plasticity indicate that in adult animals, seemingly hardwired cortical neurons first adopt wider functional roles as they develop strategies to compensate for loss of specific sensory modalities after forms of brain damage such as stroke.

Journal ArticleDOI
TL;DR: It is found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response, which suggests an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.
Abstract: The thalamus is an essential structure in the mammalian forebrain conveying information topographically from the sensory periphery to primary neocortical areas. Beyond this initial processing stage, "higher-order" thalamocortical connections have been presumed to serve only a modulatory role, or are otherwise functionally disregarded. Here we demonstrate that these "higher-order" thalamic nuclei share similar synaptic properties with the "first-order" thalamic nuclei. Using whole cell recordings from layer 4 neurons in thalamocortical slice preparations in the mouse somatosensory and auditory systems, we found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response. In contrast, the intracortical inputs from layer 6 to layer 4 exhibit facilitating EPSPs. These data suggest that higher-order thalamocortical projections may serve a functional role similar to the first-order nuclei, whereas both are physiologically distinct from the intracortical layer 6 inputs. These results suggest an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.

Journal ArticleDOI
TL;DR: In lightly sedated rats, focal enhancement of motor cortex activity facilitated sensory-evoked responses of topographically aligned neurons in primary somatosensory cortex, including antidromically identified corticothalamic cells; similar effects were observed in ventral posterior medial thalamus (VPm).
Abstract: In sedated and whisking rats, the authors show that motor cortex activity enhances sensory processing through a cortico-cortico-thalamic feedback circuit. In whisking rats, however, inhibitory brainstem input to the thalamus was also enhanced, leading to a net suppression of thalamic sensory responses. A prominent feature of thalamocortical circuitry in sensory systems is the extensive and highly organized feedback projection from the cortex to the thalamic neurons that provide stimulus-specific input to the cortex. In lightly sedated rats, we found that focal enhancement of motor cortex activity facilitated sensory-evoked responses of topographically aligned neurons in primary somatosensory cortex, including antidromically identified corticothalamic cells; similar effects were observed in ventral posterior medial thalamus (VPm). In behaving rats, thalamic responses were normally smaller during whisking but larger when signal transmission in brainstem trigeminal nuclei was bypassed or altered. During voluntary movement, sensory activity may be globally suppressed in the brainstem, whereas signaling by cortically facilitated VPm neurons is simultaneously enhanced relative to other VPm neurons receiving no such facilitation.

Journal ArticleDOI
TL;DR: A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.
Abstract: Adult brains undergo large-scale plastic changes after peripheral and central injuries. Although it has been shown that both the cortical and thalamic representations can reorganize, uncertainties exist regarding the extent, nature, and time course of changes at each level. We have determined how cortical representations in the somatosensory area 3b and the ventroposterior (VP) nucleus of thalamus are affected by long standing unilateral dorsal column lesions at cervical levels in macaque monkeys. In monkeys with recovery periods of 22-23 months, the intact face inputs expanded into the deafferented hand region of area 3b after complete or partial lesions of the dorsal columns. The expansion of the face region could extend all the way medially into the leg and foot representations. In the same monkeys, similar expansions of the face representation take place in the VP nucleus of the thalamus, indicating that both these processing levels undergo similar reorganizations. The receptive fields of the expanded representations were similar in somatosensory cortex and thalamus. In two monkeys, we determined the extent of the brain reorganization immediately after dorsal column lesions. In these monkeys, the deafferented regions of area 3b and the VP nucleus became unresponsive to the peripheral touch immediately after the lesion. No reorganization was seen in the cortex or the VP nucleus. A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.

Journal ArticleDOI
TL;DR: Characterizing the location and timing of the CC evoked responses during the 1 s period after a painful laser stimulus provides direct evidence that activations underlying the processing of nociceptive information can occur simultaneously in the “medial” and “lateral” subsystems.
Abstract: The cingulate cortex (CC) as a part of the "medial" pain subsystem is generally assumed to be involved in the affective and/or cognitive dimensions of pain processing, which are viewed as relatively slow processes compared with the sensory-discriminative pain coding by the lateral second somatosensory area (SII)-insular cortex. The present study aimed at characterizing the location and timing of the CC evoked responses during the 1 s period after a painful laser stimulus, by exploring the whole rostrocaudal extent of this cortical area using intracortical recordings in humans. Only a restricted area in the median CC region responded to painful stimulation, namely the posterior midcingulate cortex (pMCC), the location of which is consistent with the so-called "motor CC" in monkeys. Cingulate pain responses showed two components, of which the earliest peaked at latencies similar to those obtained in SII. These data provide direct evidence that activations underlying the processing of nociceptive information can occur simultaneously in the "medial" and "lateral" subsystems. The existence of short-latency pMCC responses to pain further indicates that the "medial pain system" is not devoted exclusively to the processing of emotional information, but is also involved in fast attentional orienting and motor withdrawal responses to pain inputs. These functions are, not surprisingly, conducted in parallel with pain intensity coding and stimulus localization specifically subserved by the sensory-discriminative "lateral" pain system.

Journal ArticleDOI
TL;DR: Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields.

Journal ArticleDOI
TL;DR: The results in IW showed similar activation of posterior insular cortex following CT stimulation as in GL and so strengthen the view that CT afferents underpin emotional aspects of touch, supporting the notion that CT is not a system for discriminative touch.

Journal ArticleDOI
TL;DR: Dazu wurde folgende Aufgabe trainiert: Kleinere Neuronengruppen wurden in vivo mit einer extrazellulären Mikroelektrode gereizt, anderer Tiere wurden nun auf ihre Fähigkeit untersucht, die Aktivität eines einzelnen Neurons wahrzunehmen.
Abstract: Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.

Journal ArticleDOI
16 Oct 2008-PLOS ONE
TL;DR: Findings suggest a dynamic functionally-driven plasticity of the brain in patients with chronic trigeminal neuropathic pain, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.
Abstract: Background: Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level - BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy. Methodology/Principal Findings: Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2-6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions. Conclusions: Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.

Journal ArticleDOI
TL;DR: The negative BOLD signal changes in the area of the index finger highly correlated with an increase in current perception thresholds of the contralateral, unstimulated finger, thus supporting the notion that the ipsilateral negative Bold response reflects a functionally effective inhibition in the somatosensory system.

Journal ArticleDOI
TL;DR: Investigation of the effects of different alfentanil plasma concentration levels on pain‐related brain activation achieved by short pulses of gaseous CO2 delivered to the nasal mucosa suggests differential dose–response relationships of opioid analgesia on the sensory and affective components of pain.
Abstract: Low doses of morphine, the most commonly used opioid analgesic, have been shown to significantly reduce the affective but not the sensory intensive dimension of pain. This suggests differential dose–response relationships of opioid analgesia on the sensory and affective components of pain. We investigated the effects of different alfentanil plasma concentration levels (0, 19.6±2.7, 47.2±7.6, and 76.6±11.3 ng/ml) on pain-related brain activation achieved by short pulses of gaseous CO2 delivered to the nasal mucosa, using functional magnetic resonance imaging (fMRI) on a 3.0 T MRI scanner in 16 non-carriers and 9 homozygous carriers of the μ-opioid receptor gene variant OPRM1 118A>G. Increasing opioid concentrations had differential effects in brain regions processing the sensory and affective dimensions of pain. In brain regions associated with the processing of the sensory intensity of pain (primary and secondary somatosensory cortices, posterior insular cortex), activation decreased linearly in relation to alfentanil concentrations, which was significantly less pronounced in OPRM1 118G carriers. In contrast, in brain regions known to process the affective dimension of pain (parahippocampal gyrus, amygdala, anterior insula), pain-related activation disappeared at the lowest alfentanil dose, without genotype differences. Clinical Pharmacology & Therapeutics (2008); 83, 4, 577–588.doi:10.1038/sj.clpt.6100441

Journal ArticleDOI
TL;DR: It is proposed that integration of auditory and somatotopically organized somatosensory modalities reported here may play a role in auditory fear conditioning.
Abstract: Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of attention on the activation of SI and SII, as induced by nonpainful and painful rare deviant electric stimuli during somatosensory oddball tasks.

Journal ArticleDOI
TL;DR: It is confirmed directly that TMS over right parietal cortex can affect processing in left SI of the other hemisphere, with rivalrous effects arising in the absence of somatosensory input, but facilitatory effects (possibly involving thalamic circuitry) in the presence of driving somatosensing input.
Abstract: Transcranial magnetic stimulation (TMS) has been used to document some apparent interhemispheric influences behaviorally, with TMS over the right parietal cortex reported to enhance processing of touch for the ipsilateral right hand (Seyal et al., 1995). However, the neural bases of such apparent interhemispheric influences from TMS remain unknown. Here, we studied this directly by combining TMS with concurrent functional magnetic resonance imaging (fMRI). We applied bursts of 10 Hz TMS over right parietal cortex, at a high or low intensity, during two sensory contexts: either without any other stimulation, or while participants received median nerve stimulation to the right wrist, which projects to left primary somatosensory cortex (SI). TMS to right parietal cortex affected the blood oxygenation level-dependent signal in left SI, with high- versus low-intensity TMS increasing the left SI signal during right-wrist somatosensory input, but decreasing this in the absence of somatosensory input. This state-dependent modulation of SI by parietal TMS over the other hemisphere was accompanied by a related pattern of TMS-induced influences in the thalamus, as revealed by region-of-interest analyses. A behavioral experiment confirmed that the same right parietal TMS protocol of 10 Hz bursts led to enhanced detection of perithreshold electrical stimulation of the right median nerve, which is initially processed in left SI. Our results confirm directly that TMS over right parietal cortex can affect processing in left SI of the other hemisphere, with rivalrous effects (possibly transcallosal) arising in the absence of somatosensory input, but facilitatory effects (possibly involving thalamic circuitry) in the presence of driving somatosensory input.