scispace - formally typeset
Search or ask a question

Showing papers on "Somatosensory system published in 2012"


Journal ArticleDOI
TL;DR: This paper found that SOM neurons were spontaneously active during periods of quiet wakefulness and hyperpolarized and reduced action potential firing in response to both passive and active whisker sensing, in contrast with all other recorded types of nearby neurons, which were excited by sensory input.
Abstract: Neocortical GABAergic neurons have diverse molecular, structural and electrophysiological features, but the functional correlates of this diversity are largely unknown. We found unique membrane potential dynamics of somatostatin-expressing (SOM) neurons in layer 2/3 of the primary somatosensory barrel cortex of awake behaving mice. SOM neurons were spontaneously active during periods of quiet wakefulness. However, SOM neurons hyperpolarized and reduced action potential firing in response to both passive and active whisker sensing, in contrast with all other recorded types of nearby neurons, which were excited by sensory input. Optogenetic inhibition of SOM neurons increased burst firing in nearby excitatory neurons. We hypothesize that the spontaneous activity of SOM neurons during quiet wakefulness provides a tonic inhibition to the distal dendrites of excitatory pyramidal neurons. Conversely, the inhibition of SOM cells during active cortical processing likely enhances distal dendritic excitability, which may be important for top-down computations and sensorimotor integration.

398 citations


Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Axonal calcium imaging is used to track activity in vM1→vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization and neuron information to integrate movements and touches of multiple whiskers over time is tracked.
Abstract: Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide ‘contextual’ information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1-->vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.

316 citations


Journal ArticleDOI
24 Feb 2012-Science
TL;DR: The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.
Abstract: Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via γ-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.

277 citations


Journal ArticleDOI
TL;DR: The development and patterning of the barrel cortex and the critical period plasticity are reviewed, allowing new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period Plasticity.
Abstract: In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.

270 citations


Journal ArticleDOI
TL;DR: The present findings are consistent with the hypothesis that pleasant touch from hairy skin, mediated by CT afferents, is processed in the limbic‐related cortex and represents an innate non‐learned process.
Abstract: Previous functional magnetic resonance imaging studies in two rare patients, together with microneurography and psychophysical observations in healthy subjects, have demonstrated a system of mechanosensitive C-fiber tactile (CT) afferents sensitive to slowly moving stimuli. They project to the posterior insular cortex and signal pleasant aspects of touch. Importantly, CTs have not been found in the glabrous skin of the hand, yet it is commonly observed that glabrous skin touch is also perceived as pleasant. Here we asked if the brain processing of pleasant touch differs between hairy and glabrous skin by stroking the forearm and glabrous skin of the hand during positron emission tomography. The data showed that, when contrasting slow brush stroking on the forearm with slow brush stroking on the palm, there were significant activations of the posterior insular cortex and mid-anterior orbitofrontal cortex. The opposite contrast showed a significant activation of the somatosensory cortices. Although concurrent psychophysical ratings showed no differences in intensity or pleasantness ratings, a subsequent touch questionnaire in which subjects used a newly developed 'touch perception task' showed significant difference for the two body sites. Emotional descriptors received higher ratings on the forearm and sensory descriptors were rated more highly on the palm. The present findings are consistent with the hypothesis that pleasant touch from hairy skin, mediated by CT afferents, is processed in the limbic-related cortex and represents an innate non-learned process. In contrast, pleasant touch from glabrous skin, mediated by A-beta afferents, is processed in the somatosensory cortex and represents an analytical process dependent on previous tactile experiences.

241 citations


Journal ArticleDOI
TL;DR: The naturally generated brain activation when a person imagines a simple movement is used and combined with the afferent inflow that would be generated had the movement been performed rather than imagined to open up the possibilities to alter afferent‐generated feedback depending on the demands of the movement to be performed.
Abstract: In monkeys, the repeated activation of somatosensory afferents projecting onto the motor cortex (M1) has a pivotal role in motor skill learning. Here we investigate if sensory feedback that is artificially generated at specific times during imagination of a dorsiflexion task leads to reorganization of the human M1. The common peroneal nerve was stimulated to generate an afferent volley timed to arrive during specific phases of the cortical potential generated when a movement was imagined (50 repetitions). The change in the output of M1 was quantified by applying single transcranial magnetic stimuli to the area of M1 controlling the tibialis anterior muscle. The results demonstrated that the concomitance between the cognitive process of movement (motor imagination) and the ascending volley due to the peripheral nerve stimulation can lead to significant increases in cortical excitability. These increases were critically dependent on the timing between the peripherally generated afferent volley and the cortical potential generated during the imagined movement. Only if the afferent volley arrived during the peak negative deflection of the potential, were significant alterations in motor cortical output attained. These results demonstrate that an artificially generated signal (the peripheral afferent volley) can interact with a physiologically generated signal in humans leading to plastic changes within the M1, the final output stage for movement generation within the human brain. The results presented may have implications in systems for artificially inducing cortical plasticity in patients with motor impairments (neuromodulation).

217 citations


Journal ArticleDOI
TL;DR: The functional activation of the basic locomotor and postural network, which includes the prefrontal cortex, basal ganglia, brainstem, and cerebellar locomotor centers, is preserved in the elderly.

214 citations


Journal ArticleDOI
TL;DR: It is shown in behaving rabbits that tDCS applied over the somatosensory cortex modulates cortical processes consequent to localized stimulation of the whisker pad or of the corresponding area of the ventroposterior medial (VPM) thalamic nucleus, and that blocking the activation of adenosine A1 receptors prevents the long-term depression evoked in the somatic cortex after cathodal tDCS.
Abstract: Transcranial direct-current stimulation (tDCS) is a noninvasive brain stimulation technique that has been successfully applied for modulation of cortical excitability. tDCS is capable of inducing changes in neuronal membrane potentials in a polarity-dependent manner. When tDCS is of sufficient length, synaptically driven after-effects are induced. The mechanisms underlying these after-effects are largely unknown, and there is a compelling need for animal models to test the immediate effects and after-effects induced by tDCS in different cortical areas and evaluate the implications in complex cerebral processes. Here we show in behaving rabbits that tDCS applied over the somatosensory cortex modulates cortical processes consequent to localized stimulation of the whisker pad or of the corresponding area of the ventroposterior medial (VPM) thalamic nucleus. With longer stimulation periods, poststimulation effects were observed in the somatosensory cortex only after cathodal tDCS. Consistent with the polarity-specific effects, the acquisition of classical eyeblink conditioning was potentiated or depressed by the simultaneous application of anodal or cathodal tDCS, respectively, when stimulation of the whisker pad was used as conditioned stimulus, suggesting that tDCS modulates the sensory perception process necessary for associative learning. We also studied the putative mechanisms underlying immediate effects and after-effects of tDCS observed in the somatosensory cortex. Results when pairs of pulses applied to the thalamic VPM nucleus (mediating sensory input) during anodal and cathodal tDCS suggest that tDCS modifies thalamocortical synapses at presynaptic sites. Finally, we show that blocking the activation of adenosine A1 receptors prevents the long-term depression (LTD) evoked in the somatosensory cortex after cathodal tDCS.

177 citations


Journal ArticleDOI
01 Apr 2012-Pain
TL;DR: In this article, the authors determined patterns of sensory signs in complex regional pain syndrome (CRPS) type I and II and peripheral nerve injury (PNI) patients with upper-limb CRPS-I (n=298), CRPS II (n = 46), and PNI (n/72) were examined with quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain.
Abstract: This study determined patterns of sensory signs in complex regional pain syndrome (CRPS) type I and II and peripheral nerve injury (PNI). Patients with upper-limb CRPS-I (n=298), CRPS-II (n=46), and PNI (n=72) were examined with quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain. The majority of patients (66%-69%) exhibited a combination of sensory loss and gain. Patients with CRPS-I had more sensory gain (heat and pressure pain) and less sensory loss than patients with PNI (thermal and mechanical detection, hypoalgesia to heat or pinprick). CRPS-II patients shared features of CRPS-I and PNI. CRPS-I and CRPS-II had almost identical somatosensory profiles, with the exception of a stronger loss of mechanical detection in CRPS-II. In CRPS-I and -II, cold hyperalgesia/allodynia (28%-31%) and dynamic mechanical allodynia (24%-28%) were less frequent than heat or pressure hyperalgesia (36%-44%, 67%-73%), and mechanical hypoesthesia (31%-55%) was more frequent than thermal hypoesthesia (30%-44%). About 82% of PNI patients had at least one type of sensory gain. QST demonstrates more sensory loss in CRPS-I than hitherto considered, suggesting either minimal nerve injury or central inhibition. Sensory profiles suggest that CRPS-I and CRPS-II may represent one disease continuum. However, in contrast to recent suggestions, small fiber deficits were less frequent than large fiber deficits. Sensory gain is highly prevalent in PNI, indicating a better similarity of animal models to human patients than previously thought. These sensory profiles should help prioritize approaches for translation between animal and human research.

175 citations


Journal ArticleDOI
TL;DR: Cutaneous sensory-evoked potentials in the spinal cord, primary somatosensory and motor cortex, and premotor cortex in monkeys performing an instructed delay task were investigated and suppression could be induced by both bottom-up and top-down gating mechanisms.
Abstract: All bodily movements stimulate peripheral receptors that activate neurons in the brain and spinal cord through afferent feedback. How these reafferent signals are processed within the CNS during movement is a key question in motor control. We investigated cutaneous sensory-evoked potentials in the spinal cord, primary somatosensory and motor cortex, and premotor cortex in monkeys performing an instructed delay task. Afferent inputs from cutaneous receptors were suppressed at several levels in a task-dependent manner. We found two types of suppression. First, suppression during active limb movement was observed in the spinal cord and all three cortical areas. This suppression was induced by both bottom-up and top-down gating mechanisms. Second, during preparation for upcoming movement, evoked responses were suppressed exclusively in the motor cortical areas and the magnitude of suppression was correlated with the reaction time of the subsequent movement. This suppression could be induced by a top-down gating mechanism to facilitate the preparation and execution of upcoming movement.

170 citations


Journal ArticleDOI
TL;DR: The results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex, and cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus is examined.
Abstract: The developing brain responds to the environment by using statistical correlations in input to guide functional and structural changes—that is, the brain displays neuroplasticity. Experience shapes brain development throughout life, but neuroplasticity is variable from one brain system to another. How does the early loss of a sensory modality affect this complex process? We examined cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus, the site of human primary auditory cortex, in congenitally deaf humans by measuring the fMRI signal change in response to spatially coregistered visual, somatosensory, and bimodal stimuli. In the deaf Heschl's gyrus, signal change was greater for somatosensory and bimodal stimuli than that of hearing participants. Visual responses in Heschl's gyrus, larger in deaf than hearing, were smaller than those elicited by somatosensory stimulation. In contrast to Heschl's gyrus, in the superior-temporal cortex visual signal was comparable to somatosensory signal. In addition, deaf adults perceived bimodal stimuli differently; in contrast to hearing adults, they were susceptible to a double-flash visual illusion induced by two touches to the face. Somatosensory and bimodal signal change in rostrolateral Heschl's gyrus predicted the strength of the visual illusion in the deaf adults in line with the interpretation that the illusion is a functional consequence of the altered cross-modal organization observed in deaf auditory cortex. Our results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex.

Journal ArticleDOI
TL;DR: The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus, here demonstrated for the first time in vivo long- term effects of somatosense inputs on acoustically evoked discharges of DCN neurons in guinea pigs.
Abstract: The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Shore et al., 2008; Zeng et al., 2009). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine whether plastic changes in long-lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions. Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation.

Journal ArticleDOI
TL;DR: The results suggest that the POm is functionally segregated into anterior and posterior parts and that the 2 parts may play different roles in somatosensory information processing.
Abstract: The rostral sector of the posterior thalamic nuclei (POm) is, together with the ventral posterior nuclei (VP), involved in somatosensory information processing in rodents. The POm receives inputs from the spinal cord and trigeminal nuclei and projects to the primary somatosensory (S1) cortex and other cortical areas. Although thalamocortical axons of single VP neurons are well known to innervate layer (L) 4 of the S1 cortex with distinct columnar organization, those of POm neurons have not been elucidated yet. In the present study, we investigated complete axonal and dendritic arborizations of single POm neurons in rats by visualizing the processes with Sindbis viruses expressing membrane-targeted fluorescent protein. When we divided the POm into anterior and posterior parts according to calbindin immunoreactivity, dendrites of posterior POm neurons were wider but less numerous than those of anterior neurons. More interestingly, axon fibers of anterior POm neurons were preferentially distributed in L5 of the S1 cortex, whereas those of posterior neurons were principally spread in L1 with wider and sparser arborization than those of anterior neurons. These results suggest that the POm is functionally segregated into anterior and posterior parts and that the 2 parts may play different roles in somatosensory information processing.

Journal ArticleDOI
TL;DR: Using functional and anatomical magnetic resonance imaging, it is found that, while human patients with neuropathic pain displayed cortical reorganization and changes in somatosensory cortex activity, patients with non-neuropathic chronic pain did not.
Abstract: The somatosensory cortex remodels in response to sensory deprivation, with regions deprived of input invaded by neighboring representations. The degree of cortical reorganization is correlated with ongoing pain intensity, which has led to the assumption that chronic pain conditions are invariably associated with somatosensory cortex reorganization. Because the presentation and etiology of chronic pain vary, we determined whether cortical changes in human subjects are similar for differing pain types. Using functional and anatomical magnetic resonance imaging, we found that, while human patients with neuropathic pain displayed cortical reorganization and changes in somatosensory cortex activity, patients with non-neuropathic chronic pain did not. Furthermore, cortical reorganization in neuropathic pain patients was associated with changes in regional anatomy. These data, by showing that pain per se is not associated with cortical plasticity, suggest that treatments aimed at reversing cortical reorganization should only be considered for use in patients with certain types of chronic pain.

Journal ArticleDOI
TL;DR: The findings show that AN is associated with double disruption of brain connectivity, which shows a specific association with visuospatial difficulties and may explain the failure of the integration process between visual and somatosensory perceptual information that might sustain body image disturbance.

Journal ArticleDOI
TL;DR: It is shown that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished and the altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates.
Abstract: Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat primary somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates.

Journal ArticleDOI
TL;DR: The findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.
Abstract: The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

Journal ArticleDOI
TL;DR: It is reported in 3- to 6-day-old rats that whiskers twitch rapidly and asynchronously during active sleep; furthermore, neurons in whisker thalamus exhibit bursts of activity that are tightly associated with twitches but occur infrequently during waking.

Journal ArticleDOI
TL;DR: The posterior insula of the human brain this paper represents the main sensory receiving area of the spinothalamic system, and as such contributes to the processing of thermo-sensory, nociceptive, C-fibre tactile, and visceral input.
Abstract: Summary To be considered specific for nociception, a cortical region should: (a) have plausible connections with ascending nociceptive pathways; (b) be activated by noxious stimuli; (c) trigger nociceptive sensations if directly stimulated; and (d) tone down nociception when injured. In addition, lesions in this area should have a potential to develop neuropathic pain, as is the case of all lesions in nociceptive pathways. The single cortical region approaching these requirements in humans encompasses the suprasylvian posterior insula and its adjoining medial operculum (referred to as “PIMO” in this review). This region does not contain, however, solely nociceptive networks, but represents in primates the main sensory receiving area of the spinothalamic system, and as such contributes to the processing of thermo-sensory, nociceptive, C-fibre tactile, and visceral input. Nociception (and, a fortiori, pain) should therefore not be considered as a separate sensory modality, like vision or audition, but rather as one component of a global system subtending the most primitive forms of somatosensation. Although a clear functional segregation of PIMO sub-areas has not yet been achieved, some preferential distribution has been described in humans: pain-related networks appear preferentially distributed within the posterior insula, and non-noxious thermal processing in the adjacent medial operculum. Thus, spinothalamic sub-modalities may be partially segregated in the PIMO, in analogy with the separate representation of dorsal column input from joint, muscle spindle and tactile afferents in S1. Specificity, however, may not wholly depend on ascending ‘labelled lines’ but also on cortical network properties driven by intrinsic and extrinsic circuitry. Given its particular anatomo-functional properties, thalamic connections, and tight relations with limbic and multisensory cortices, the PIMO region deserves to be considered as a third somatosensory region (S3) devoted to the processing of spinothalamic inputs.

Journal ArticleDOI
04 Dec 2012-PLOS ONE
TL;DR: P pulsed US can functionally stimulate different somatosensory fibers and receptors, which may permit new approaches to the study and diagnosis of peripheral nerve injury, dysfunction, and disease.
Abstract: Peripheral somatosensory circuits are known to respond to diverse stimulus modalities. The energy modalities capable of eliciting somatosensory responses traditionally belong to mechanical, thermal, electromagnetic, and photonic domains. Ultrasound (US) applied to the periphery has also been reported to evoke diverse somatosensations. These observations however have been based primarily on subjective reports and lack neurophysiological descriptions. To investigate the effects of peripherally applied US on human somatosensory brain circuit activity we recorded evoked potentials using electroencephalography and conducted functional magnetic resonance imaging of blood oxygen level-dependent (BOLD) responses to fingertip stimulation with pulsed US. We found a pulsed US waveform designed to elicit a mild vibration sensation reliably triggered evoked potentials having distinct waveform morphologies including a large double-peaked vertex potential. Fingertip stimulation with this pulsed US waveform also led to the appearance of BOLD signals in brain regions responsible for somatosensory discrimination including the primary somatosensory cortex and parietal operculum, as well as brain regions involved in hierarchical somatosensory processing, such as the insula, anterior middle cingulate cortex, and supramarginal gyrus. By changing the energy profile of the pulsed US stimulus waveform we observed pulsed US can differentially activate somatosensory circuits and alter subjective reports that are concomitant with changes in evoked potential morphology and BOLD response patterns. Based on these observations we conclude pulsed US can functionally stimulate different somatosensory fibers and receptors, which may permit new approaches to the study and diagnosis of peripheral nerve injury, dysfunction, and disease.

Journal ArticleDOI
TL;DR: The existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex is revealed and comparable cortical representations for, and possible interactions between, mechanoreceptive and nOCiceptive signals are suggested.
Abstract: Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded functional magnetic resonance imaging analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the time course and the spatial pattern of plastic changes in cortical organization involved in chronic pain.

Journal ArticleDOI
05 Dec 2012-PLOS ONE
TL;DR: Evidence is provided that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1and M1, which may underpin changes in corticomotor excitability in response to afferent input generated by PES.
Abstract: Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same timecourse when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.

Journal ArticleDOI
TL;DR: The data demonstrate that paired-pulse suppression of human SI is significantly reduced in older adults, and that age-related enhancement of cortical excitability correlates with degradation of tactile perception, indicating that cortex excitability constitutes an important mechanism that links age- related neurophysiological changes to behavioral alterations in humans.
Abstract: Aging affects all levels of neural processing, including changes of intracortical inhibition and cortical excitability. Paired-pulse stimulation, the application of two stimuli in close succession, is a useful tool to investigate cortical excitability in humans. The paired-pulse behavior is characterized by the second response being significantly suppressed at short stimulus onset asynchronies. While in rat somatosensory cortex, intracortical inhibition has been demonstrated to decline with increasing age, data from human motor cortex of elderly subjects are controversial and there are no data for the human somatosensory cortex (SI). Moreover, behavioral implications of age-related changes of cortical excitability remain elusive. We therefore assessed SI excitability by combining paired-pulse median nerve stimulation with recording somatosensory evoked potentials in 138 healthy subjects aged 17–86 years. We found that paired-pulse suppression was characterized by substantial interindividual variability, but declined significantly with age, confirming reduced intracortical inhibition in elderly subjects. To link the age-related increase of cortical excitability to perceptual changes, we measured tactile two-point discrimination in a subsample of 26 aged participants who showed either low or high paired-pulse suppression. We found that tactile performance was particularly impaired in subjects showing markedly enhanced cortical excitability. Our data demonstrate that paired-pulse suppression of human SI is significantly reduced in older adults, and that age-related enhancement of cortical excitability correlates with degradation of tactile perception. These findings indicate that cortical excitability constitutes an important mechanism that links age-related neurophysiological changes to behavioral alterations in humans.

Journal ArticleDOI
TL;DR: A gene mutation is described that modulates touch sensitivity in mice and humans and KCNQ4 is established as a specific molecular marker for rapidly adapting Meissner and a subset of hair follicle afferents.
Abstract: Mutations inactivating the potassium channel KCNQ4 (K(v)7.4) lead to deafness in humans and mice. In addition to its expression in mechanosensitive hair cells of the inner ear, KCNQ4 is found in the auditory pathway and in trigeminal nuclei that convey somatosensory information. We have now detected KCNQ4 in the peripheral nerve endings of cutaneous rapidly adapting hair follicle and Meissner corpuscle mechanoreceptors from mice and humans. Electrophysiological recordings from single afferents from Kcnq4(-/-) mice and mice carrying a KCNQ4 mutation found in DFNA2-type monogenic dominant human hearing loss showed elevated mechanosensitivity and altered frequency response of rapidly adapting, but not of slowly adapting nor of D-hair, mechanoreceptor neurons. Human subjects from independent DFNA2 pedigrees outperformed age-matched control subjects when tested for vibrotactile acuity at low frequencies. This work describes a gene mutation that modulates touch sensitivity in mice and humans and establishes KCNQ4 as a specific molecular marker for rapidly adapting Meissner and a subset of hair follicle afferents.

Journal ArticleDOI
TL;DR: The purpose of this review is to outline practical considerations for the design of a somatosensory interface based on present knowledge of the anatomy and physiology, prior attempts to elicit somatic sensations using electrical stimulation, and lessons learned from successful sensory neuroprostheses such as the cochlear implant.
Abstract: State-of-the-art upper extremity prostheses include anthropomorphic hands with dexterity that approximates that of a human. To be fully useful, these devices will require an advanced somatosensory neural interface to convey tactile and proprioceptive feedback to the user. To this end, microstimulation methods are being developed using microelectrode arrays implanted at various locations along the somatosensory neuraxis, from peripheral nerves to primary somatosensory cortex. There is presently no consensus as to the best approach, although results from animal and human studies lend support for each. The purpose of this review is to outline practical considerations for the design of a somatosensory interface based on present knowledge of the anatomy and physiology, prior attempts to elicit somatic sensations using electrical stimulation, and lessons learned from successful sensory neuroprostheses such as the cochlear implant.

Journal ArticleDOI
TL;DR: Findings demonstrate that vicarious somatosensory responses for simple touch are influenced by the observer's personality traits, therefore suggesting a role for personality traits in a putative mirror neuron system.

Journal ArticleDOI
07 Mar 2012-PLOS ONE
TL;DR: The findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1.
Abstract: Background The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. Methodology/Principal Findings To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. Conclusions/Significance Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.

OtherDOI
TL;DR: It is proposed that neural signals related to bodily velocity form the basic descending command that controls locomotion through specific and well-characterized relationships between muscle activation, step cycle phase durations, and biomechanical outcomes.
Abstract: Animal movement is immensely varied, from the simplest reflexive responses to the most complex, dexterous voluntary tasks. Here, we focus on the control of movement in mammals, including humans. First, the sensory inputs most closely implicated in controlling movement are reviewed, with a focus on somatosensory receptors. The response properties of the large muscle receptors are examined in detail. The role of sensory input in the control of movement is then discussed, with an emphasis on the control of locomotion. The interaction between central pattern generators and sensory input, in particular in relation to stretch reflexes, timing, and pattern forming neuronal networks is examined. It is proposed that neural signals related to bodily velocity form the basic descending command that controls locomotion through specific and well-characterized relationships between muscle activation, step cycle phase durations, and biomechanical outcomes. Sensory input is crucial in modulating both the timing and pattern forming parts of this mechanism.

Journal ArticleDOI
TL;DR: The modeling results on relative evidence between recurrent and feedforward model comparison support the hypothesis that the ERP responses from sensory areas arising after aware stimulus detection can be explained by increased recurrent processing within the somatosensory network in the later stages of stimulus processing.
Abstract: The neural mechanisms of stimulus detection, despite extensive research, remain elusive. The recurrent processing hypothesis, a prominent theoretical account of perceptual awareness, states that, although stimuli might in principle evoke feedforward activity propagating through the visual cortex, stimuli that become consciously detected are further processed in feedforward–feedback loops established between cortical areas. To test this theory in the tactile modality, we applied dynamic causal modeling to electroencephalography (EEG) data acquired from humans in a somatosensory detection task. In the analysis of stimulation-induced event-related potentials (ERPs), we focused on model-based evidence for feedforward, feedback, and recurrent processing between primary and secondary somatosensory cortices. Bayesian model comparison revealed that, although early EEG components were well explained by both the feedforward and the recurrent models, the recurrent model outperformed the other models when later EEG segments were analyzed. Within the recurrent model, stimulus detection was characterized by a relatively early strength increase of the feedforward connection from primary to secondary somatosensory cortex (>80 ms). At longer latencies (>140 ms), also the feedback connection showed a detection-related strength increase. The modeling results on relative evidence between recurrent and feedforward model comparison support the hypothesis that the ERP responses from sensory areas arising after aware stimulus detection can be explained by increased recurrent processing within the somatosensory network in the later stages of stimulus processing.

Journal ArticleDOI
TL;DR: Evidence is provided that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition.