scispace - formally typeset
Search or ask a question

Showing papers on "Somatosensory system published in 2014"


Journal ArticleDOI
TL;DR: It is concluded that transcranial focused ultrasound (tFUS) targeted to the human primary somatosensory cortex can be used to focally modulate human cortical function.
Abstract: Improved methods of noninvasively modulating human brain function are needed. Here we probed the influence of transcranial focused ultrasound (tFUS) targeted to the human primary somatosensory cortex (S1) on sensory-evoked brain activity and sensory discrimination abilities. The lateral and axial spatial resolution of the tFUS beam implemented were 4.9 mm and 18 mm, respectively. Electroencephalographic recordings showed that tFUS significantly attenuated the amplitudes of somatosensory evoked potentials elicited by median nerve stimulation. We also found that tFUS significantly modulated the spectral content of sensory-evoked brain oscillations. The changes produced by tFUS on sensory-evoked brain activity were abolished when the acoustic beam was focused 1 cm anterior or posterior to S1. Behavioral investigations showed that tFUS targeted to S1 enhanced performance on sensory discrimination tasks without affecting task attention or response bias. We conclude that tFUS can be used to focally modulate human cortical function.

643 citations


Journal ArticleDOI
04 Dec 2014-Nature
TL;DR: It is found that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Abstract: The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.

613 citations


Journal ArticleDOI
29 May 2014-Nature
TL;DR: These data are the first, to the authors' knowledge, to directly demonstrate a functional, excitatory connection between epidermal cells and sensory neurons, and indicate that Merkel cells actively tune mechanosensory responses to facilitate high spatio-temporal acuity.
Abstract: Touch submodalities, such as flutter and pressure, are mediated by somatosensory afferents whose terminal specializations extract tactile features and encode them as action potential trains with unique activity patterns. Whether non-neuronal cells tune touch receptors through active or passive mechanisms is debated. Terminal specializations are thought to function as passive mechanical filters analogous to the cochlea's basilar membrane, which deconstructs complex sounds into tones that are transduced by mechanosensory hair cells. The model that cutaneous specializations are merely passive has been recently challenged because epidermal cells express sensory ion channels and neurotransmitters; however, direct evidence that epidermal cells excite tactile afferents is lacking. Epidermal Merkel cells display features of sensory receptor cells and make 'synapse-like' contacts with slowly adapting type I (SAI) afferents. These complexes, which encode spatial features such as edges and texture, localize to skin regions with high tactile acuity, including whisker follicles, fingertips and touch domes. Here we show that Merkel cells actively participate in touch reception in mice. Merkel cells display fast, touch-evoked mechanotransduction currents. Optogenetic approaches in intact skin show that Merkel cells are both necessary and sufficient for sustained action-potential firing in tactile afferents. Recordings from touch-dome afferents lacking Merkel cells demonstrate that Merkel cells confer high-frequency responses to dynamic stimuli and enable sustained firing. These data are the first, to our knowledge, to directly demonstrate a functional, excitatory connection between epidermal cells and sensory neurons. Together, these findings indicate that Merkel cells actively tune mechanosensory responses to facilitate high spatio-temporal acuity. Moreover, our results indicate a division of labour in the Merkel cell-neurite complex: Merkel cells signal static stimuli, such as pressure, whereas sensory afferents transduce dynamic stimuli, such as moving gratings. Thus, the Merkel cell-neurite complex is an unique sensory structure composed of two different receptor cell types specialized for distinct elements of discriminative touch.

419 citations


Journal ArticleDOI
TL;DR: More investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed.
Abstract: Summary Movement disorders, which include disorders such as Parkinson's disease, dystonia, Tourette's syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed

283 citations


Journal ArticleDOI
TL;DR: Functional investigations revealed that tFUS targeted to somatosensory cortex significantly enhanced discrimination of pins at closer distances as well as frequency of air puffs, without affecting response bias or task attention, and neuromodulating influence and spatial resolution were assessed.
Abstract: E arly attempts at stimulation of the central nervous system to modulate function date back to ancient Rome, but it was Sir Victor Horsley who is credited with first utilizing intraoperative electrical stimulation for cortical mapping. Although noninvasive methods of stimulation have been developed, these suffer from poor spatial resolution. Consequently, attempts at neuromodulation often impact the activity of not only the intended target but also surrounding brain. The effects of focused ultrasound (FUS) on neuronal activity have been studied since the 1920s, and in animals have been shown to modulate activity of peripheral nerves, the retina, spinal reflexes, hippocampus, and motor cortex. Unlike high intensity, continuous ultrasound (US), FUS can exert nondestructive mechanical pressure effects on cellular membranes and ion channels without producing cavitation and thermal injury. Animal studies have demonstrated the ability of FUS to reversibly suppress visual evoked potentials, modulate activity of the frontal eye fields, and disrupt seizure activity, all in the absence of cellular damage. In a recent report, investigators sought to establish the ability of transcranial focused ultrasound (tFUS) to modulate brain activity in the human primary somatosensory cortex. Legon et al employed a single-element tFUS transducer to transmit a 0.5 MHz pulsed wave for 500 ms. The acoustic power of the tFUS waveform used was well below the maximum recommended limit for diagnostic imaging applications. The authors first characterized the acoustic pressure field emitted from the tFUS transducer in an acoustic test-tank. Next, a magnetic resonance imaging-based 3-D simulation model of a human head was created to estimate acoustic field distribution in the brain during tFUS.Ultimately the authors assessed the neuromodulating influence and spatial resolution of tFUS targeted to Brodmann area 3b (anterior bank of the postcentral gyrus facing the central sulcus) by examining effects on somatosensory evoked potentials (SEPs) and sensory detection thresholds via within-subjects, sham-controlled, blinded design study of 12 volunteers. Primary endpoints included amplitude of short-latency and late-onset evoked potentials by median nerve stimulation, as well as two-point and frequency discrimination tasks. The focal volume of the ellipsoid acoustic beam produced was 0.21cm3 at 50% maximum intensity line and demonstrated spatial resolution of 4.9mm laterally and 18mm axially when focused through the human skull. Electrophysiologic studies demonstrated that tFUS targeted to Brodmann area 3b significantly reduced the amplitude of short-latency and late-onset evoked cortical activity elicited by median-nerve SEPs. The effects of tFUS on SEP activity were abolished when targeted to brain regions 1 cm posterior or 1 cm anterior to the postcentral gyrus. Functional investigations revealed that tFUS targeted to somatosensory cortex significantly enhanced discrimination of pins at closer distances as well as frequency of air puffs, without affecting response bias or task attention. Additionally, the authors noted that volunteers did not report thermal or mechanical sensations due to tFUS transmission through the scalp. Similarly, there were no reports of perceptual differences between the sham and tFUS conditions. These data demonstrate that a pulsed acoustic beam created by a single-element 0.5-MHz tFUS transducer for 500 ms can be used to transiently and noninvasively modulate neuronal activity in the cortex of humans. tFUS may transiently shift the balance of neuronal activity in favor of local inhibition, perhaps through either dampening thalamocortical excitation or increasing interneuron inhibitory firing. One hypothesis for the paradoxical improvement in somatosensory discrimination provided by the authors is through filtering by local inhibition. In other words, the inhibition produced by tFUSmay reduce spatial spread of cortical excitation resulting in restricted neuronal population activation and a more precise cortical representation of tactile stimuli. Although this study provided evidence that the influence of tFUS can be restricted to discrete modules of cortex, it did not elucidate which cellular structures tFUS most affects. Further studies are needed to characterizewhether neurophysiologic effects vary according to anatomic location and/or cytoarchitectonic division. One of the most enticing applications of tFUS is the possibility of noninvasive, functional brain mapping of both cortical and sub-cortical structures and circuits. Subablative sonication targeting the ventral intermediate region of the thalamus has already been used to provide functional target confirmation prior to lesioning with MR guided high-intensity FUS. However, the current study highlights the nondestructive capabilities of tFUS and inspires exploration of potential applications in both the research and clinical settings.

262 citations


Journal ArticleDOI
19 Dec 2014-eLife
TL;DR: Transcriptional profiling is used to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation.
Abstract: In the nervous system, a network of specialized neurons—known as the somatosensory system—carries information about sensations including touch, muscle position, temperature and pain. Distinct sets of somatosensory neurons are thought to carry information about the different types of sensations. In young animals, the precise switching on, or ‘expression’, of genes controls the formation of the network of neurons. However, it is not known exactly which genes are expressed in what types of neurons, where, or when. Here, Chiu et al. used a technique called flow cytometry using different fluorescent markers to isolate a group of cells called Dorsal Root Ganglion (DRG) neurons in mice. These neurons have long thread-like fibers that extend from the spinal cord to the skin, muscles and joints all over the body. These fibers carry sensory information to the spinal cord, where it can be relayed to the brain and processed. The experiments compared three distinct types of DRG neuron and found that they differed in their ability to send information to other cells. Chiu et al. analyzed the expression of all the genes in the three types of DRG neurons. Each type of neuron had distinct groups of genes that were being expressed. Also, several genes that are known to be important for sensation were expressed at different levels in the different types of cells. Next, large numbers of single cells were analyzed to find out the finer details about the three types of neuron. These findings made it possible to further divide the DRG neurons into six distinct subsets that matched previously known groups of somatosensory neurons, and also identified new ones. Chiu et al.'s findings reveal the complexity and diversity of the neurons involved in carrying information about sensations towards the brain. This is an important step in classifying the nervous system, and uncovers many genes previously not linked to sensation. The next challenges lie in understanding how the expression of these genes in each type of neuron relates to their unique roles.

206 citations


Journal ArticleDOI
TL;DR: The current knowledge of the different sensory neuron subtypes in the mouse is reviewed, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles are reviewed.
Abstract: The word somatosensation comes from joining the Greek word for body (soma) with a word for perception (sensation). Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia) and at the base of the skull (the trigeminal ganglia). While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor a model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.

197 citations


Journal ArticleDOI
TL;DR: The findings suggest that loss of peripheral nerve fibers is an intrinsic feature of PD and that peripheral nerve changes may reflect the two types of central alpha-synuclein-related PD pathology, namely neuronal death and axonal degeneration.
Abstract: The deposition of alpha-synuclein in the brain, the neuropathological hallmark of Parkinson’s disease (PD), follows a distinct anatomical and temporal sequence. This study aimed to characterize alpha-synuclein deposition in cutaneous nerves from patients with PD. We further strived to explore whether peripheral nerve involvement is intrinsic to PD and reflective of known features of brain pathology, which could render it a useful tool for pathogenetic studies and pre-mortem histological diagnosis of PD. We obtained skin biopsies from the distal and proximal leg, back and finger of 31 PD patients and 35 controls and quantified the colocalization of phosphorylated alpha-synuclein in somatosensory and autonomic nerve fibers and the pattern of loss of different subtypes of dermal fibers. Deposits of phosphorylated alpha-synuclein were identified in 16/31 PD patients but in 0/35 controls (p < 0.0001). Quantification of nerve fibers revealed two types of peripheral neurodegeneration in PD: (1) a length-dependent reduction of intraepidermal small nerve fibers (p < 0.05) and (2) a severe non-length-dependent reduction of substance P-immunoreactive intraepidermal nerve fibers (p < 0.0001). The latter coincided with a more pronounced proximal manifestation of alpha-synuclein pathology in the skin. The histological changes did not correlate with markers of levodopa toxicity such as vitamin B12 deficiency. Our findings suggest that loss of peripheral nerve fibers is an intrinsic feature of PD and that peripheral nerve changes may reflect the two types of central alpha-synuclein-related PD pathology, namely neuronal death and axonal degeneration. Detection of phosphorylated alpha-synuclein in dermal nerve fibers might be a useful diagnostic test for PD with high specificity but low sensitivity.

195 citations


Journal ArticleDOI
TL;DR: This work reports a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling, and identifies a new function for Oxytocin in promotingCross-modal, experience-dependent cortical development.
Abstract: Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

170 citations


Journal ArticleDOI
17 Sep 2014-Neuron
TL;DR: It is shown that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons, and CT- Projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas.

165 citations


Journal ArticleDOI
01 Jul 2014-Pain
TL;DR: It is demonstrated that regardless of the individual somatosensory phenotype and signs of central sensitization, primary afferent input is critical for maintaining neuropathic pain in peripheral nerve injury and distal polyneuropathy.
Abstract: Central sensitization after peripheral nerve injury may result in ectopic neuronal activity in the spinal cord dorsal horn, implying a potential autonomous pain-generating mechanism. This study used peripheral nerve blockade and systemic lidocaine administration, with detailed somatosensory assessment, to determine the contribution of primary afferent input in maintaining peripheral neuropathic pain. Fourteen patients with neuropathic pain (7 with unilateral foot pain due to peripheral nerve injury and 7 with bilateral pain in the feet due to distal polyneuropathy) underwent comprehensive characterization of somatosensory function by quantitative sensory testing. Patients were then administered an ultrasound-guided peripheral nerve block with lidocaine and intravenous lidocaine infusion in randomized order. The effect of these interventions on spontaneous pain intensity and on evoked cold, warm, pinprick, and brush responses was assessed at each session. All patients had sensory disturbances at baseline. The peripheral nerve block resulted in a complete abolition of ipsilateral pain within 10 min (median) in all patients, with lidocaine plasma concentrations being too low to account for a systemic effect of the drug. Intravenous lidocaine infusion reduced the spontaneous pain by 45.5% (±31.7%), and it reduced mechanical and thermal hypersensitivity in most patients who displayed such signs. However, the improvement in evoked hypersensitivity was not related to the effect of the drug on spontaneous pain intensity. This study demonstrated that regardless of the individual somatosensory phenotype and signs of central sensitization, primary afferent input is critical for maintaining neuropathic pain in peripheral nerve injury and distal polyneuropathy.

Journal ArticleDOI
TL;DR: Thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested, which allows thalamoc Cortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.
Abstract: Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.

Journal ArticleDOI
19 Mar 2014-Neuron
TL;DR: It is demonstrated that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels, which reveals a molecular mechanism by which opioids modulate cutaneous mechanosensation.

Journal ArticleDOI
01 Dec 2014-Brain
TL;DR: Using quantitative sensory testing, neurophysiology and skin biopsies, Schmid et al. demonstrate that carpal tunnel syndrome affects large fibres and their nodal complexes, but is also associated with a reduction in the number of small sensory axons.
Abstract: Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity.

Journal ArticleDOI
01 Aug 2014-Pain
TL;DR: A general weakening of sensory integration underlies clinical pain in fibromyalgia, and reduced functional connectivity extended beyond the somatosensory domain and implicated visual and auditory sensory modalities.
Abstract: Fibromyalgia typically presents with spontaneous body pain with no apparent cause and is considered pathophysiologically to be a functional disorder of somatosensory processing. We have investigated potential associations between the degree of self-reported clinical pain and resting-state brain functional connectivity at different levels of putative somatosensory integration. Resting-state functional magnetic resonance imaging was obtained in 40 women with fibromyalgia and 36 control subjects. A combination of functional connectivity-based measurements were used to assess (1) the basic pain signal modulation system at the level of the periaqueductal gray (PAG); (2) the sensory cortex with an emphasis on the parietal operculum/secondary somatosensory cortex (SII); and (3) the connectivity of these regions with the self-referential "default mode" network. Compared with control subjects, a reduction of functional connectivity was identified across the 3 levels of neural processing, each showing a significant and complementary correlation with the degree of clinical pain. Specifically, self-reported pain in fibromyalgia patients correlated with (1) reduced connectivity between PAG and anterior insula; (2) reduced connectivity between SII and primary somatosensory, visual, and auditory cortices; and (3) increased connectivity between SII and the default mode network. The results confirm previous research demonstrating abnormal functional connectivity in fibromyalgia and show that alterations at different levels of sensory processing may contribute to account for clinical pain. Importantly, reduced functional connectivity extended beyond the somatosensory domain and implicated visual and auditory sensory modalities. Overall, this study suggests that a general weakening of sensory integration underlies clinical pain in fibromyalgia.

Journal ArticleDOI
TL;DR: It is shown that large-scale reorganization in area 3b following spinal cord injuries is due to changes at the level of the brainstem nuclei and not due to cortical mechanisms.
Abstract: Adult mammalian brains undergo reorganization following deafferentations due to peripheral nerve, cortical or spinal cord injuries. The largest extent of cortical reorganization is seen in area 3b of the somatosensory cortex of monkeys with chronic transection of the dorsal roots or dorsal columns of the spinal cord. These injuries cause expansion of intact face inputs into the deafferented hand cortex, resulting in a change of representational boundaries by more than 7 mm. Here we show that large-scale reorganization in area 3b following spinal cord injuries is due to changes at the level of the brainstem nuclei and not due to cortical mechanisms. Selective inactivation of the reorganized cuneate nucleus of the brainstem eliminates observed face expansion in area 3b. Thus, the substrate for the observed expanded face representation in area 3b lies in the cuneate nucleus.

Journal ArticleDOI
TL;DR: A lack of normal habituation to repetitive stimuli during the interictal state and a tendency towards development of sensitization likely contribute to migraine-related alterations in sensory processing.
Abstract: Migraine is associated with derangements in perception of multiple sensory modalities including vision, hearing, smell, and somatosensation. Compared to people without migraine, migraineurs have lower discomfort thresholds in response to special sensory stimuli as well as to mechanical and thermal noxious stimuli. Likewise, the environmental triggers of migraine attacks, such as odors and flashing lights, highlight basal abnormalities in sensory processing and integration. These alterations in sensory processing and perception in migraineurs have been investigated via physiological studies and functional brain imaging studies. Investigations have demonstrated that migraineurs during and between migraine attacks have atypical stimulus-induced activations of brainstem, subcortical, and cortical regions that participate in sensory processing. A lack of normal habituation to repetitive stimuli during the interictal state and a tendency towards development of sensitization likely contribute to migraine-related alterations in sensory processing.

Journal ArticleDOI
TL;DR: These findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception.
Abstract: Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.

Journal ArticleDOI
TL;DR: The results suggest that activation of M1 evokes within S1 a bombardment of excitatory and inhibitory synaptic activity that could contribute in a layer-specific manner to state-dependent changes in S1.
Abstract: Anatomical studies have shown that primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected. The M1 to S1 projection is thought to represent a modulatory signal that conveys motor-related information to S1. Here, we investigated M1 synaptic inputs to S1 by injecting an AAV virus containing channelrhodopsin-2 and a fluorescent tag into M1. Consistent with previous results, we found labeling of M1 axons within S1 that was most robust in the deep layers and in L1. Labeling was sparse in L4 and was concentrated in the interbarrel septa, largely avoiding barrel centers. In S1, we recorded in vitro from regular-spiking excitatory neurons and fast-spiking and somatostatin-expressing inhibitory interneurons. All 3 cell types had a high probability of receiving direct excitatory M1 input. Both excitatory and inhibitory cells within L4 were the least likely to receive such input from M1. Disynaptic inhibition was observed frequently, indicating that M1 recruits substantial inhibition within S1. Additionally, a subpopulation of L6 regular-spiking excitatory neurons received exceptionally strong M1 input. Overall, our results suggest that activation of M1 evokes within S1 a bombardment of excitatory and inhibitory synaptic activity that could contribute in a layer-specific manner to state-dependent changes in S1.

Journal ArticleDOI
TL;DR: This work identified spatially distinct RSNs in the human spinal cord that were clearly separated into dorsal and ventral components, mirroring the functional neuroanatomy of the spinal cord and likely reflecting sensory and motor processing.
Abstract: Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain have repeatedly been observed when no task or external stimulation is present. These fluctuations likely reflect baseline neuronal activity of the brain and correspond to functionally relevant resting-state networks (RSN). It is not known however, whether intrinsically organized and spatially circumscribed RSNs also exist in the spinal cord, the brain’s principal sensorimotor interface with the body. Here, we use recent advances in spinal fMRI methodology and independent component analysis to answer this question in healthy human volunteers. We identified spatially distinct RSNs in the human spinal cord that were clearly separated into dorsal and ventral components, mirroring the functional neuroanatomy of the spinal cord and likely reflecting sensory and motor processing. Interestingly, dorsal (sensory) RSNs were separated into right and left components, presumably related to ongoing hemibody processing of somatosensory information, whereas ventral (motor) RSNs were bilateral, possibly related to commissural interneuronal networks involved in central pattern generation. Importantly, all of these RSNs showed a restricted spatial extent along the spinal cord and likely conform to the spinal cord’s functionally relevant segmental organization. Although the spatial and temporal properties of the dorsal and ventral RSNs were found to be significantly different, these networks showed significant interactions with each other at the segmental level. Together, our data demonstrate that intrinsically highly organized resting-state fluctuations exist in the human spinal cord and are thus a hallmark of the entire central nervous system.

Journal ArticleDOI
TL;DR: It is shown that changes in the way the brain processes somatosensory information in the first year of life underlie the origins of the ability to dynamically update the location of a perceived touch across limb movements become functional during the firstyear of life.

Journal ArticleDOI
TL;DR: It is suggested that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorim motor networks required for the refinement of sensorimotor coordination.
Abstract: Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

Journal ArticleDOI
TL;DR: The results suggest that brain mechanisms associated with both sensory-discriminative and affective-motivational aspects of touch are largely established in school-aged children, and that there is a general continuing maturation of SII and a female-specific increase in pSTS sensitivity with age.
Abstract: Affective tactile stimulation plays a key role in the maturation of neural circuits, but the development of brain mechanisms processing touch is poorly understood. We therefore used functional magnetic resonance imaging (fMRI) to study brain responses to soft brush stroking of both glabrous (palm) and hairy (forearm) skin in healthy children (5–13 years), adolescents (14–17 years), and adults (25–35 years). Adult-defined regions-of-interests in the primary somatosensory cortex (SI), secondary somatosensory cortex (SII), insular cortex and right posterior superior temporal sulcus (pSTS) were significantly and similarly activated in all age groups. Whole-brain analyses revealed that responses in the ipsilateral SII were positively correlated with age in both genders, and that responses in bilateral regions near the pSTS correlated significantly and strongly with age in females but not in males. These results suggest that brain mechanisms associated with both sensory-discriminative and affective-motivational aspects of touch are largely established in school-aged children, and that there is a general continuing maturation of SII and a female-specific increase in pSTS sensitivity with age. Our work establishes a groundwork for future comparative studies of tactile processing in developmental disorders characterized by disrupted social perception such as autism.

Journal ArticleDOI
14 Feb 2014-Brain
TL;DR: The results show for the first time that the delusions shown by somatoparaphrenic patients are associated with an altered physiological index of perceptual analysis, supporting the notion that representation of the body may be affected at different levels following brain damage.
Abstract: A complex brain representation of our body allows us to monitor incoming sensory stimuli and plan actions towards the external world. A critical element of such a complex representation is the sense of ownership towards our own body parts. Brain damage may disrupt this representation, leading to the striking neuropsychological condition called somatoparaphrenia, that is, the delusion that one's own limbs belong to someone else. The clinical features characterizing somatoparaphrenia are well known, however, physiological clues of the level at which this condition may disrupt sensory functions are unknown. In the present study we investigated this issue by measuring the anticipatory skin conductance response to noxious stimuli approaching either the affected or the intact body side in a group of patients with somatoparaphrenia (n=5; three females, age range=66-84), and in a group of patients with anosognosia for sensory deficits, i.e. preserved ownership but decreased awareness of somatosensory deficit, (n=5; one female, age range=62-81 years) and in a group of purely hemiplegic patients (n=5; two females, age range=63-74 years) with no deficits of ownership or sensory awareness. Results show that anticipatory skin conductance responses to noxious stimuli directed to the contralesional hand are significantly reduced as compared to noxious stimuli directed to the ipsilesional hand in patients with somatoparaphrenia. By contrast a non-reduced anticipatory skin conductance response was observed in control participants as well as in patients affected by anosognosia for the somatosensory deficit and in patients affected by pure motor deficits. Furthermore, a pain anticipation response was always measured when the stimuli were directed towards the ipsilesional, unaffected hand in all groups. Our results show for the first time that the delusions shown by somatoparaphrenic patients are associated with an altered physiological index of perceptual analysis. The reduced response to sensory threats approaching the body suggests a deep detachment of the affected body part from the patient's body representation. Conversely, normal reactions to incoming threats are found in the presence of impaired sensory awareness but intact body ownership, supporting the notion that representation of the body may be affected at different levels following brain damage.

Journal ArticleDOI
TL;DR: The detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described, a cuff of PE-20 polyethylene tubing of standardized length is unilaterally implanted around the main branch of the sciatic nerve and induces a long-lasting mechanical allodynia.
Abstract: Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.

Journal ArticleDOI
TL;DR: The increasing importance of TRPV1 as a regulator of brain function is highlighted and possible bases for the future development of new therapeutic approaches that by targeting brain TRpV1 receptors might be used for the treatment of several neurological disorders are discussed.

Journal ArticleDOI
TL;DR: The results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.
Abstract: The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.

Journal ArticleDOI
01 Jun 2014-Brain
TL;DR: Primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients, corroborating previous preliminary multi-modal neuroimaging findings.
Abstract: Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is unknown. Sixty-three subjects with carpal tunnel syndrome aged 20–60 years and 28 age- and sex-matched healthy control subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit cortical separation distance for each digit’s contralateral primary somatosensory cortex representation was assessed. We also evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary contraction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test. These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third interdigit cortical separation distance (P < 0.05) in contralateral primary somatosensory cortex, corroborating our previous preliminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome demonstrated reduced maximum voluntary contraction pinch strength (P < 0.01) and a reduced number of pinch/release cycles per second (P < 0.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demonstrated greater response time (P < 0.05), and reduced sensory discrimination accuracy (P < 0.001) for median nerve, but not ulnar nerve, innervated digits. Moreover, the second/third interdigit cortical separation distance was negatively correlated with paraesthesia severity (r = −0.31, P < 0.05), and number of pinch/release cycles (r = −0.31, P < 0.05), and positively correlated with the second and third digit sensory discrimination accuracy (r = 0.50, P < 0.05). Therefore, reduced second/third interdigit cortical separation distance in contralateral primary somatosensory cortex was associated with worse symptomatology (particularly paraesthesia), reduced fine motor skill performance, and worse sensory discrimination accuracy for median nerve innervated digits. In conclusion, primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients.

Journal ArticleDOI
TL;DR: Two models for the untested hypothesis that adding SES to unilateral motor practice could magnify the magnitude of inter-limb transfer are proposed and would expand the evolving repertoire of sensory augmentation of cross-education using mirrors and add SES as an alternative to conventional rehabilitation strategies such as constraint-induced movement therapy.

Journal ArticleDOI
TL;DR: This review focuses specifically on cortical whisker motor control, which is important for active tactile sensory perception in mice and rats and may play important functional roles, since stimulation of M1 drives exploratory rhythmic whisking, whereas stimulation of S1 drives whisker retraction.
Abstract: Facial muscles drive whisker movements, which are important for active tactile sensory perception in mice and rats. These whisker muscles are innervated by cholinergic motor neurons located in the lateral facial nucleus. The whisker motor neurons receive synaptic inputs from premotor neurons, which are located within the brain stem, the midbrain, and the neocortex. Complex, distributed neural circuits therefore regulate whisker movement during behavior. This review focuses specifically on cortical whisker motor control. The whisker primary motor cortex (M1) strongly innervates brain stem reticular nuclei containing whisker premotor neurons, which might form a central pattern generator for rhythmic whisker protraction. In a parallel analogous pathway, the whisker primary somatosensory cortex (S1) strongly projects to the brain stem spinal trigeminal interpolaris nucleus, which contains whisker premotor neurons innervating muscles for whisker retraction. These anatomical pathways may play important functional roles, since stimulation of M1 drives exploratory rhythmic whisking, whereas stimulation of S1 drives whisker retraction.