scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
25 Oct 2007-Neuron
TL;DR: The tactile somatosensory pathway from whisker to cortex in rodents provides a well-defined system for exploring the link between molecular mechanisms, synaptic circuits, and behavior.

642 citations

Journal ArticleDOI
06 Dec 2007-Neuron
TL;DR: The spread of sensory information to motor cortex was dynamically regulated by behavior and correlated with the generation of sensory-evoked whisker movement, which may contribute significantly to active tactile sensory perception.

635 citations

Journal ArticleDOI
TL;DR: The emergence of sensitive drive in such regions after prolonged recovery periods in lesioned animals thus suggests that the auditory cortical frequency map undergoes reorganization in cases of partial deafness.
Abstract: We have examined the effect of restricted unilateral cochlear lesions on the orderly topographic mapping of sound frequency in the auditory cortex of adult guinea pigs. These lesions, although restricted in spatial extent, resulted in a variety of patterns of histological damage to receptor cells and nerve fibres within the cochlea. Nevertheless, all lesions resulted in permanent losses of sensitivity of the cochlear neural output across a limited frequency range. Thirty-five to 81 days after such damage to the organ of Corti, the area of contralateral auditory cortex in which the lesioned frequency range would normally have been represented was partly occupied by an expanded representation of sound frequencies adjacent to the frequency range damaged by the lesion. The thresholds at their new characteristic frequencies (CFs) of clusters of cortical neurones in these regions were close to normal thresholds at those frequencies (mean difference across all animals was 3.8 dB). In a second series of experiments, the responses of neurone clusters were examined within hours of making similar cochlear lesions. It was found that shifts in CF toward frequencies spared by the lesions could occur, but thresholds were greatly elevated compared to normal (mean difference was 31.7 dB in five animals). The emergence of sensitive drive in such regions after prolonged recovery periods in lesioned animals thus suggests that the auditory cortical frequency map undergoes reorganization in cases of partial deafness. Some features of this reorganization are similar to changes reported in somatosensory cortex after peripheral nerve injury, and this form of plasticity may therefore be a feature of all adult sensory systems.

615 citations

Journal ArticleDOI
04 Dec 2014-Nature
TL;DR: It is found that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Abstract: The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.

613 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234