scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested, which allows thalamoc Cortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.
Abstract: Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.

137 citations

Journal ArticleDOI
TL;DR: The distribution of presumptive low‐threshold mechanoreceptors innervating the distal finger pads of monkeys was determined and axons that innervate multiple MCs or the axons with en passant Merkel terminations seem most suited to transduce tangential forces.
Abstract: Recent electrophysiological studies demonstrated that neurons in the somatosensory cortex of monkeys respond to tangential forces applied to glabrous skin. To unravel the peripheral basis for this cortical response, we determined the distribution of presumptive low-threshold mechanoreceptors innervating the distal finger pads of monkeys. Endings were reconstructed in immunolabeled serial sections imaged by epifluorescence and confocal microscopy. Although classically implicated as cutaneous stretch receptors, no Ruffini corpuscles were found in the glabrous skin. Ruffini-like endings were only detected at the base of the finger nails. Pacinian corpuscles were sparsely distributed in the deep dermis. Meissner corpuscles (MCs) in dermal papillary ridges had a comparably high density in the thumb, index, and fifth fingers. Each MC was innervated by several large-caliber axons. Within the limits of our reconstructions, some of these axons terminated in only one MC, whereas others innervated several MCs. Merkel endings covered about 80% of the base of the intermediate epidermal ridges that form the pattern of fingerprints. In some cases, the distal tip of a Merkel-related axon gave rise to a several terminal branches that supplied endings to tightly circumscribed (30-70 microm) clusters of Merkel cells. In other cases, the nodes of axons gave rise to en passant branches that formed extended chains of endings among Merkel cells spread over territories up to 300 microm long. Based on their relatively diffuse distributions, the axons that innervate multiple MCs or the axons with en passant Merkel terminations seem most suited to transduce tangential forces.

137 citations

Journal ArticleDOI
TL;DR: A grid translation of columnar somatosensory cortical inputs into striatum and a detailed map for the rat sensorimotor zone are shown, showing the lattice‐like grid is a novel functional/neuroanatomic organization that is ideal for distributing, combining, and integrating information for sensorsimotor and cognitive processing.
Abstract: The neuroanatomic organizing principles underlying integrative functions in the striatum are only partially understood. Within the three major subdivisions of the striatum-sensorimotor, associative, and limbic--longitudinal zones of axonal plexuses from the cerebral cortex end in bands and clusters that innervate cell groups. To identify organizing principles of the corticostriate bands and clusters, we localized somatosensory cortical cells receptive to light touch on the hindlimb, forelimb, or vibrissae by extracellular recording, and we labeled their projections by iontophoretic application of dextran anterograde tracers. The results show that cortical cells in columnar groups project to the striatum in the form of successive strips, or laminae, that parallel the curve of the external capsule. The vibrissae somatosensory cortex projects to the most lateral lamina. Just medial to the vibrissae projection, the major axonal arborizations arising from hindlimb and forelimb somatosensory cortex are organized within a common lamina, where they interdigitate and overlap as well as remain separate. In addition, the hindlimb and forelimb cortex send small projections to the vibrissae lamina, and vice versa, forming broken, radially oriented lines of points across the laminar strips. The major somatosensory projections are in the dorsolateral, calbindin-poor sensorimotor striatum, whereas the radially oriented projection points extend into the medial, calbindin-rich associative striatum. Extending previous studies of corticostriate projections, this report shows a grid translation of columnar somatosensory cortical inputs into striatum and a detailed map for the rat sensorimotor zone. The lattice-like grid is a novel functional/neuroanatomic organization that is ideal for distributing, combining, and integrating information for sensorimotor and cognitive processing.

137 citations

Journal ArticleDOI
TL;DR: It is demonstrated that peripheral innervation plays a large role in the organization of the neocortex, as cortical territories normally involved in visual processing are completely captured by the auditory and somatosensory system.
Abstract: In the current investigation, the neurophysiological organization of the neocortex was examined in adult animals that were bilaterally enucleated very early in life, before the retino-geniculo-cortical pathway was established. Our results indicate that some aspects of development of cortical fields are not mediated by specific sensory inputs. However, the current study also demonstrates that peripheral innervation plays a large role in the organization of the neocortex, as cortical territories normally involved in visual processing are completely captured by the auditory and somatosensory system. Thus, a large degree of phenotypic variability in cortical organization can be accomplished solely by removing or modifying sensory inputs.

137 citations

Journal ArticleDOI
TL;DR: The anatomy, connectivity, and functions of the somatosensory cortex are discussed, with a focus on its role in emotional regulation, to support the hypothesis that it may be a treatment target for certain mental disorders.

136 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234