scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of activation intensities under different functional conditions indicates the involvement of SII in stimulus perception generation and of the SI/MI and SMA areas in the processing of proprioceptive input.
Abstract: It has been shown that the primary and secondary somatosensory cortex, as well as the supplementary motor area (SMA), are involved in central processing of proprioceptive signals during passive and active arm movements. However, it is not clear whether different cortical areas are involved in processing of different proprioceptive inputs (skin, joint, muscle receptors), what their relative contributions might be, where kinesthetic sensations are formed within the CNS, and how they interact when the full peripheral proprioceptive machinery acts. In this study we investigated the representation of the brain structures involved in the perception of passive limb movement and illusory movement generated by muscle tendon vibration. Changes in cortical activity as indicated by changes in regional cerebral blood flow (rCBF) were measured using positron emission tomography (PET). Twelve subjects were studied under four conditions: (1) passive flexion-extension movement (PM) of the left forearm; (2) induced illusions of movements (VI) similar to the real PM, induced by alternating vibration of biceps and triceps tendons (70–80 Hz) at the elbow; (3) alternating vibration of biceps and triceps tendons (with 20–50 Hz) without induced kinesthetic illusions (VN); and (4) rest condition (RE). The results show different patterns of cortex activation. In general, the activation during passive movement was higher in comparison with both kinds of vibration, and activation during vibrations with induced illusions of movement was more prominent than during vibrations without induced illusions. When the PM condition was contrasted with the other conditions we found the following areas of activation – the primary motor (MI) and somatosensory area (SI), the SMA and the supplementary somatosensory area (SSA). In conditions where passive movements and illusory movements were contrasted with rest, some temporal areas, namely primary and associative auditory cortex, were activated, as well as secondary somatosensory cortex (SII). Our data show that different proprioceptive inputs, which induce sensation of movement, are associated with differently located activation patterns in the SI/MI and SMA areas of the cortex. In general, the comparison of activation intensities under different functional conditions indicates the involvement of SII in stimulus perception generation and of the SI/MI and SMA areas in the processing of proprioceptive input. Activation of the primary and secondary auditory cortex might reflect the interaction between somatosensory and auditory systems in movement sense generation. SSA might also be involved in movement sense generation and/or maintenance.

129 citations

Journal ArticleDOI
TL;DR: The trigeminal nerve of a teleost fish, the rainbow trout, was examined to determine what types of somatosensory receptors were present on the head of the trout specifically searching for nociceptors, which had similar physiological properties to nocICEptors found in higher vertebrates.

129 citations

Journal ArticleDOI
TL;DR: The results indicate that thalamic synchronization has a significant impact on cortical responsiveness and suggest that neuronal synchronization may play a critical role in the transmission of sensory information from one brain region to another.
Abstract: To assess the impact of thalamic synchronization on cortical responsiveness, we used conditional cross-correlation analysis to measure the probability of neuronal discharges in somatosensory cortex as a function of the time between discharges in pairs of simultaneously recorded neurons in the ventrobasal thalamus. Among 26 neuronal trios, we found that thalamocortical efficacy after synchronous thalamic activity was nearly twice as large as the efficacy rate obtained when pairs of thalamic neurons discharged asynchronously. Nearly half of these neuronal trios displayed cooperative effects in which the cortical discharge probability after synchronous thalamic events was larger than could be predicted from the efficacy rate of individual thalamic discharges. In these cases of heterosynaptic cooperativity, thalamocortical efficacy declined to asymptotic levels when the interspike intervals were >6–8 msec. These results indicate that thalamic synchronization has a significant impact on cortical responsiveness and suggest that neuronal synchronization may play a critical role in the transmission of sensory information from one brain region to another.

128 citations

Journal ArticleDOI
TL;DR: This study shows that in normal monkeys the nonnociceptive, lemniscal component of the somatosensory pathways at spinal, brainstem, and thalamic levels is distinguished by cells and fibers immunoreactive for the calcium-binding protein parvalbumin, whereas cells of the nocICEptive component at these levels are distinguished by immunoreactivity for 28-kDa calbindin.
Abstract: Chronic deafferentation of skin and peripheral tissues is associated with plasticity of representational maps in cerebral cortex and with perturbations of sensory experience that include severe "central" pain. This study shows that in normal monkeys the nonnociceptive, lemniscal component of the somatosensory pathways at spinal, brainstem, and thalamic levels is distinguished by cells and fibers immunoreactive for the calcium-binding protein parvalbumin, whereas cells of the nociceptive component at these levels are distinguished by immunoreactivity for 28-kDa calbindin. Long-term dorsal rhizotomies in monkeys lead to transneuronal degeneration of parvalbumin cells at brainstem and thalamic sites accompanied in the thalamus by a down-regulation of gamma-aminobutyric acid type A receptors and an apparent increase in activity of calbindin cells preferentially innervated by central pain pathways. Release from inhibition and imbalance in patterns of somatosensory inputs from thalamus to cerebral cortex may constitute subcortical mechanisms for inducing changes in representational maps and perturbations of sensory perception, including central pain.

128 citations

Journal ArticleDOI
TL;DR: In this article, the authors used functional magnetic resonance imaging (fMRI) to investigate whether the pathways for haptic and visual processing of location and texture are segregated, and the extent of bisensory convergence.

128 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234