scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the existence of a well-defined vestibular cortical system in humans has been verified from single-unit recordings and tracer studies in three different primate species.

431 citations

Journal ArticleDOI
TL;DR: FMRI results suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors, and provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input.
Abstract: Anticipation of pain is a complex state that may influence the perception of subsequent noxious stimuli. We used functional magnetic resonance imaging (fMRI) to study changes of activity of cortical nociceptive networks in healthy volunteers while they expected the somatosensory stimulation of one foot, which might be painful (subcutaneous injection of ascorbic acid) or not. Subjects had no previous experience of the noxious stimulus. Mean fMRI signal intensity increased over baseline values during anticipation and during actual stimulation in the putative foot representation area of the contralateral primary somatosensory cortex (SI). Mean fMRI signals decreased during anticipation in other portions of the contralateral and ipsilateral SI, as well as in the anteroventral cingulate cortex. The activity of cortical clusters whose signal time courses showed positive or negative correlations with the individual psychophysical pain intensity curve was also significantly affected during the waiting period. Positively correlated clusters were found in the contralateral SI and bilaterally in the anterior cingulate, anterior insula, and medial prefrontal cortex. Negatively correlated clusters were found in the anteroventral cingulate bilaterally. In all of these areas, changes during anticipation were of the same sign as those observed during pain but less intense ( approximately 30-40% as large as peak changes during actual noxious stimulation). These results provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input and suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors.

431 citations

Journal ArticleDOI
TL;DR: It is shown that through a highly sensitive recurrent inhibitory circuit, cortical excitability can be modulated by one pyramidal cell, and the distribution of excitatory input amplitudes onto inhibitory neurons influences the sensitivity and dynamic range of the recurrent circuit.
Abstract: The balance between excitation and inhibition in the cortex is crucial in determining sensory processing. Because the amount of excitation varies, maintaining this balance is a dynamic process; yet the underlying mechanisms are poorly understood. We show here that the activity of even a single layer 2/3 pyramidal cell in the somatosensory cortex of the rat generates widespread inhibition that increases disproportionately with the number of active pyramidal neurons. This supralinear increase of inhibition results from the incremental recruitment of somatostatin-expressing inhibitory interneurons located in layers 2/3 and 5. The recruitment of these interneurons increases tenfold when they are excited by two pyramidal cells. A simple model demonstrates that the distribution of excitatory input amplitudes onto inhibitory neurons influences the sensitivity and dynamic range of the recurrent circuit. These data show that through a highly sensitive recurrent inhibitory circuit, cortical excitability can be modulated by one pyramidal cell.

427 citations

Journal ArticleDOI
06 Nov 1998-Science
TL;DR: The growth of intracortical but not thalamocortical connections could account for much of the reorganization of the sensory maps in cortex in macaque monkeys with long-standing, accidental trauma to a forelimb.
Abstract: Distributions of thalamic and cortical connections were investigated in four macaque monkeys with long-standing, accidental trauma to a forelimb, to determine whether the growth of new connections plays a role in the reorganization of somatosensory cortex that occurs after major alterations in peripheral somatosensory inputs. In each monkey, microelectrode recordings of cortical areas 3b and 1 demonstrated massive reorganizations of the cortex related to the affected limb. Injections of tracers in area 1 of these monkeys revealed normal patterns of thalamocortical connections, but markedly expanded lateral connections in areas 3b and 1. Thus, the growth of intracortical but not thalamocortical connections could account for much of the reorganization of the sensory maps in cortex.

427 citations

Journal ArticleDOI
03 Jan 2008-Nature
TL;DR: It is shown that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task, and single neuron activity can cause a change in the animal’s detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.
Abstract: Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.

424 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234