scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Two types of anatomical pathways are described and quantify that possibly underlie short-latency multisensory integration processes in the primary auditory, somatosensory, and visual cortex of Mongolian gerbils, and V1, where V1 provides the most pronounced feedforward-type outputs and receives most pronounced feedback-type inputs.
Abstract: Multisensory integration does not only recruit higher-level association cortex, but also low-level and even primary sensory cortices. Here, we will describe and quantify two types of anatomical pathways, a thalamocortical and a corticocortical that possibly underlie short-latency multisensory integration processes in the primary auditory (A1), somatosensory (S1), and visual cortex (V1). Results were obtained from Mongolian gerbils, a common model-species in neuroscience, using simultaneous injections of different retrograde tracers into A1, S1, and V1. Several auditory, visual, and somatosensory thalamic nuclei project not only to the primary sensory area of their own (matched) but also to areas of other (non-matched) modalities. The crossmodal output ratios of these nuclei, belonging to both core and non-core sensory pathways, vary between 0.4 and 63.5 % of the labeled neurons. Approximately 0.3 % of the sensory thalamic input to A1, 5.0 % to S1, and 2.1 % to V1 arise from non-matched nuclei. V1 has most crossmodal corticocortical connections, projecting strongest to S1 and receiving a similar amount of moderate inputs from A1 and S1. S1 is mainly interconnected with V1. A1 has slightly more projections to V1 than S1, but gets just faint inputs from there. Concerning the layer-specific distribution of the retrogradely labeled somata in cortex, V1 provides the most pronounced feedforward-type outputs and receives (together with S1) most pronounced feedback-type inputs. In contrast, A1 has most pronounced feedback-type outputs and feedforward-type inputs in this network. Functionally, the different sets of thalamocortical and corticocortical connections could underlie distinctive types of integration mechanisms for different modality pairings.

93 citations

Journal ArticleDOI
TL;DR: Electrophysiology and retrograde labeling are used to study a region of the rat parietotemporal cortex that responds uniquely to auditory and somatosensory multisensory stimulation, which suggests a functional organization resembling mult isensory association cortex in cats and primates.
Abstract: Multisensory integration is essential for the expression of complex behaviors in humans and animals. However, few studies have investigated the neural sites where multisensory integration may occur. Therefore, we used electrophysiology and retrograde labeling to study a region of the rat parietotemporal cortex that responds uniquely to auditory and somatosensory multisensory stimulation. This multisensory responsiveness suggests a functional organization resembling multisensory association cortex in cats and primates. Extracellular multielectrode surface mapping defined a region between auditory and somatosensory cortex where responses to combined auditory/somatosensory stimulation were larger in amplitude and earlier in latency than responses to either stimulus alone. Moreover, multisensory responses were nonlinear and differed from the summed unimodal responses. Intracellular recording found almost exclusively multisensory cells that responded to both unisensory and multisensory stimulation with excitatory postsynaptic potentials (EPSPs) and/or action potentials, conclusively defining a multisensory zone (MZ). In addition, intracellular responses were similar to extracellular recordings, with larger and earlier EPSPs evoked by multisensory stimulation, and interactions suggesting nonlinear postsynaptic summation to combined stimuli. Thalamic input to MZ from unimodal auditory and somatosensory thalamic relay nuclei and from multisensory thalamic regions support the idea that parallel thalamocortical projections may drive multisensory functions as strongly as corticocortical projections. Whereas the MZ integrates uni- and multisensory thalamocortical afferent streams, it may ultimately influence brainstem multisensory structures such as the superior colliculus.

93 citations

Journal ArticleDOI
TL;DR: The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers.

93 citations

Journal ArticleDOI
TL;DR: The dorsal column nuclei and the sensory trigeminal nuclei project not only to the ventrobasal thalamus but also to the cerebellum, and the numbers and distribution of neurones projecting to these two regions were examined.
Abstract: The dorsal column nuclei and the sensory trigeminal nuclei project not only to the ventrobasal thalamus but also to the cerebellum. In this study the numbers and distribution of neurones projecting to these two regions were examined for the following nuclei: the rostral part of the main cuneate nucleus, the external cuneate nucleus, nucleus x, the principal sensory nucleus of the trigeminal nerve, and the oral, interpolar, and caudal subnuclei of the spinal nucleus of the trigeminal nerve. A thalamic projection from nucleus x and from the external cuneate nucleus was confirmed, and a distinct group of neurones projecting to the ventroposteromedial thalamus was distinguished near the ventromedial aspect of the principal sensory nucleus. Of the 165,000 neurones examined, only one was found to be double labelled. It was concluded that the populations of neurones that project to the ventrobasal thalamus and to the cerebellum are separate, and that somatosensory neurones in the brainstem do not send axon collaterals to both regions.

93 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234