scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: While it is likely that these three distinct multisensory neural circuits have different functional roles, their constituent neurons appear to integrate their various sensory inputs in much the same way.
Abstract: 1. Physiological methods were used to examine the pattern of inputs from different sensory cortices onto individual superior colliculus neurons. 2. Visual, auditory, and somatosensory influences fr...

279 citations

Journal ArticleDOI
24 Feb 2012-Science
TL;DR: The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.
Abstract: Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via γ-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.

277 citations

Journal ArticleDOI
TL;DR: It is concluded that the PrV input mediates the near "one-to-one" correspondence between a neuronal response in V PM and a single mystacial whisker and alterations in VPM responses produced by changing the depth of anesthesia are due to its selective influence on the properties mediated by SpVi inputs at the level of the thalamus.
Abstract: Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. The dominant frequency of electrocorticographic (ECoG) recordings was used to determine the de...

277 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: Ex vivo skin/nerve preparations from Atoh1CKO animals demonstrate complete loss of the characteristic neurophysiologic responses normally mediated by Merkel cell-neurite complexes, suggesting that these cells form an indispensible part of the somatosensory system.
Abstract: The peripheral nervous system detects different somatosensory stimuli, including pain, temperature, and touch. Merkel cell-neurite complexes are touch receptors composed of sensory afferents and Merkel cells. The role that Merkel cells play in light-touch responses has been the center of controversy for over 100 years. We used Cre-loxP technology to conditionally delete the transcription factor Atoh1 from the body skin and foot pads of mice. Merkel cells are absent from these areas in Atoh1(CKO) animals. Ex vivo skin/nerve preparations from Atoh1(CKO) animals demonstrate complete loss of the characteristic neurophysiologic responses normally mediated by Merkel cell-neurite complexes. Merkel cells are, therefore, required for the proper encoding of Merkel receptor responses, suggesting that these cells form an indispensible part of the somatosensory system.

276 citations

Journal ArticleDOI
01 Oct 2008-Brain
TL;DR: The patterns of activations and deactivations during caloric and galvanic vestibular stimulations in healthy subjects have been compared with those in patients with acute and chronic peripheral and central Vestibular disorders, and the hypothesis that the (para-) flocculus and tonsil play a crucial role in DBN is supported.
Abstract: This review summarizes our current knowledge of multisensory vestibular structures and their functions in humans. Most of it derives from brain activation studies with PET and fMRI conducted over the last decade. The patterns of activations and deactivations during caloric and galvanic vestibular stimulations in healthy subjects have been compared with those in patients with acute and chronic peripheral and central vestibular disorders. Major findings are the following: (1) In patients with vestibular neuritis the central vestibular system exhibits a spontaneous visual-vestibular activation–deactivation pattern similar to that described in healthy volunteers during unilateral vestibular stimulation. In the acute stage of the disease regional cerebral glucose metabolism (rCGM) increases in the multisensory vestibular cortical and subcortical areas, but simultaneously it significantly decreases in the visual and somatosensory cortex areas. (2) In patients with bilateral vestibular failure the activation–deactivation pattern during vestibular caloric stimulation shows a decrease of activations and deactivations. (3) Patients with lesions of the vestibular nuclei due to Wallenberg's syndrome show no activation or significantly reduced activation in the contralateral hemisphere during caloric irrigation of the ear ipsilateral to the lesioned side, but the activation pattern in the ipsilateral hemisphere appears ‘normal’. These findings indicate that there are bilateral ascending vestibular pathways from the vestibular nuclei to the vestibular cortex areas, and the contralateral tract crossing them is predominantly affected. (4) Patients with posterolateral thalamic infarctions exhibit significantly reduced activation of the multisensory vestibular cortex in the ipsilateral hemisphere, if the ear ipsilateral to the thalamic lesion is stimulated. Activation of similar areas in the contralateral hemisphere is also diminished but to a lesser extent. These data demonstrate the functional importance of the posterolateral thalamus as a vestibular gatekeeper. (5) In patients with vestibulocerebellar lesions due to a bilateral floccular deficiency, which causes downbeat nystagmus (DBN), PET scans reveal that rCGM is reduced in the region of the cerebellar tonsil and flocculus/paraflocculus bilaterally. Treatment with 4-aminopyridine lessens this hypometabolism and significantly improves DBN. These findings support the hypothesis that the (para-) flocculus and tonsil play a crucial role in DBN. Although we can now for the first time attribute particular activations and deactivations to functional deficits in distinct vestibular disorders, the complex puzzle of the various multisensory and sensorimotor functions of the phylogenetically ancient vestibular system is only slowly being unraveled.

276 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234