scispace - formally typeset
Search or ask a question
Topic

Somatosensory system

About: Somatosensory system is a research topic. Over the lifetime, 6371 publications have been published within this topic receiving 316900 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux.

169 citations

Journal ArticleDOI
TL;DR: Most sensorially driven spike activity in layers I-IV of the rat barrel cortex is dependent upon NMDA receptor action, which appears to be enabled by contingent subthreshold depolarization largely through non-NMDA receptors action, whereas the earliest thalamocortical discharges are evoked solely throughnon- NMDA receptors.
Abstract: The main objective of this study was to establish the contribution of NMDA receptors to natural processing of somatosensory information within rat SI barrel cortex. Responses of 52 cells in layers I-IV of the rat barrel cortex were analyzed by PSTH (peristimulus histogram) analysis of evoked spikes in reply to brief deflections of the principal whisker in animals anesthetized with urethane. Short and longer peak latency responses within PSTHs were compared in the presence and absence of the specific NMDA and non-NMDA antagonists D(-)- 2-amino-5-phosphonovaleric acid and 6,7-dinitroquinoxaline-2,3-dione, which were administered locally to neurons by iontophoresis and additionally tested against their putative specific agonists, NMDA and quisqualate, respectively. The results suggest the following. (1) The generation of most spikes from cells in layers I-IV is dependent upon activation of NMDA receptors. However, NMDA receptors do not contribute to responses at very short latencies commensurate with monosynaptic thalamocortical relay for layer IV cells. These appear to be entirely mediated through non-NMDA receptors. (2) In the absence of transmission through NMDA receptors, non-NMDA receptors do not generate significant spike activity in later (10–100 msec latency) discharges. (3) NMDA receptor participation in first spike generation is directly dependent upon the latency of response of the cell to principal whisker deflection. (4) Latency of response, non-NMDA receptor-mediated spike generation and laminar location were powerfully covariant. (5) In addition, it was found that cells exhibiting short-duration spikes ( 80% dependent upon NMDA receptor action. It is concluded that most sensorially driven spike activity in layers I-IV is dependent upon NMDA receptor action. This appears to be enabled by contingent subthreshold depolarization largely through non-NMDA receptor action, whereas the earliest thalamocortical discharges are evoked solely through non-NMDA receptors.

169 citations

Journal ArticleDOI
13 Oct 2021-Nature
TL;DR: In this paper, the authors show that PROKR2Cre-marked sensory neurons, which innervate the periosteum but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal-adrenal axis.
Abstract: Somatosensory autonomic reflexes allow electroacupuncture stimulation (ES) to modulate body physiology at distant sites1–6 (for example, suppressing severe systemic inflammation6–9). Since the 1970s, an emerging organizational rule about these reflexes has been the presence of body-region specificity1–6. For example, ES at the hindlimb ST36 acupoint but not the abdominal ST25 acupoint can drive the vagal–adrenal anti-inflammatory axis in mice10,11. The neuroanatomical basis of this somatotopic organization is, however, unknown. Here we show that PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia (for example, the periosteum) but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal–adrenal axis. Low-intensity ES at the ST36 site in mice with ablated PROKR2Cre-marked sensory neurons failed to activate hindbrain vagal efferent neurons or to drive catecholamine release from adrenal glands. As a result, ES no longer suppressed systemic inflammation induced by bacterial endotoxins. By contrast, spinal sympathetic reflexes evoked by high-intensity ES at both ST25 and ST36 sites were unaffected. We also show that optogenetic stimulation of PROKR2Cre-marked nerve terminals through the ST36 site is sufficient to drive the vagal–adrenal axis but not sympathetic reflexes. Furthermore, the distribution patterns of PROKR2Cre nerve fibres can retrospectively predict body regions at which low-intensity ES will or will not effectively produce anti-inflammatory effects. Our studies provide a neuroanatomical basis for the selectivity and specificity of acupoints in driving specific autonomic pathways. Neuroanatomical findings demonstrate why electroactupuncture at only specific acupoints can drive the vagal–adrenal axis and treat inflammation in mice.

169 citations

Journal ArticleDOI
TL;DR: The principal difference between the latencies of ERPs to auditory compared with somatosensory stimuli was that P3 was significantly longer for somatoensory stimulation, although differences in task difficulty may have influenced this finding.

169 citations

Journal ArticleDOI
TL;DR: The large majority of cells showed a statistically significant modulation of activity as a function of load direction, which was qualitatively similar to that seen in motor cortex under similar task conditions, and the results emphasize the important influence of muscle contractile activity on the central proprioceptive representation of active movements.
Abstract: 1. We studied the activity of 254 cells in the primary somatosensory cortex (SI) responding to inputs from peripheral proprioceptors in a variety of tasks requiring active reaching movements of the...

169 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Dopaminergic
29K papers, 1.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023463
2022986
2021238
2020233
2019234