scispace - formally typeset
Search or ask a question
Topic

Soot

About: Soot is a research topic. Over the lifetime, 11809 publications have been published within this topic receiving 295049 citations.


Papers
More filters
Journal ArticleDOI
01 Jul 2005-Carbon
TL;DR: In this article, experimental conditions and mathematical fitting procedures for the collection and analysis of Raman spectra of soot and related carbonaceous materials have been investigated and optimised with a Raman microscope system operated at three different laser excitation wavelengths (514, 633, and 780 nm).

3,304 citations

Journal ArticleDOI
01 Jan 1977
TL;DR: In this paper, a model for the rate of combustion which takes into account the intermittent appearance of reacting species in turbulent flames is presented, which is applicable to premixed as well as diffusion flames.
Abstract: Principles of mathematical models as tools in engineering and science are discussed in relation to turbulent combustion modeling. A model is presented for the rate of combustion which takes into account the intermittent appearance of reacting species in turbulent flames. This model relates the rate of combustion to the rate of dissipation of eddies and expresses the rate of reaction by the mean concentration of a reacting specie, the turbulent kinetic energy and the rate of dissipation of this energy. The essential features of this model are that it does not call for predictions of fluctuations of reacting species and that it is applicable to premixed as well as diffusion flames. The combustion model is tested on both premixed and diffusion flames with good results. Special attention is given to soot formation and combustion in turbulent flames. Predictions are made for two C 2 H 2 turbulent diffusion flames by incorporating both the above combustion model and the model for the rate of soot formation developed by Tesner et al., as well as previous observations by Magnussen concerning the behavior of soot in turbulent flames. The predicted results are in close agreement with the experimental data. All predictions in the present paper have been made by modeling turbulence by the k -∈ model. Buoyancy is taken into consideration in the momentum equations. Effects of terms containing density fluctuations have not been included.

2,575 citations

Journal ArticleDOI
TL;DR: In this article, a new HEI study showed that some low-emission diesel engines emit much higher concentrations of nanoparticles than older designs and other low-EMission designs, which has raised questions about whether nanoparticle (number based) emission standards should be imposed.

2,263 citations

Journal ArticleDOI
TL;DR: In this paper, a general scheme of polycyclic aromatic hydrocarbons (PAH) formation and sequential growth of PAH by reactions with stable and radical species, including single-ring aromatics, other PAH and acetylene, is discussed.

1,620 citations

Journal ArticleDOI
TL;DR: In this paper, chemical reactions and physical processes responsible for the formation of polycyclic aromatic hydrocarbons and soot in hydrocarbon flames are reviewed, focusing on major elements in the present understanding of the phenomena, clarification of concepts central to the present state of the art, and a summary of new results.
Abstract: Chemical reactions and physical processes responsible for the formation of polycyclic aromatic hydrocarbons and soot in hydrocarbon flames are reviewed. The discussion is focused on major elements in the present understanding of the phenomena, clarification of concepts central to the present state of the art, and a summary of new results.

1,350 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
92% related
Heat transfer
181.7K papers, 2.9M citations
78% related
Turbulence
112.1K papers, 2.7M citations
77% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Reynolds number
68.4K papers, 1.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023569
20221,090
2021550
2020519
2019634
2018478