scispace - formally typeset
Search or ask a question
Topic

Sound transmission class

About: Sound transmission class is a research topic. Over the lifetime, 4453 publications have been published within this topic receiving 55234 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, sound propagation tests were made in forest, edge, and grassland habitats in Panama to quantify pure tone and random noise band sound transmission levels, and the sounds of birds in each habitat were analyzed to determine the emphasized frequency, frequency range, and sound type (whether pure tonelike or highly modulated).
Abstract: This study describes selection derived from habitat acoustics on the physical structure of avian sounds. Sound propagation tests were made in forest, edge, and grassland habitats in Panama to quantify pure tone and random noise band sound transmission levels. The sounds of bird species in each habitat were analyzed to determine the emphasized frequency, frequency range, and sound type (whether pure tonelike or highly modulated). Forest habitats differ from grass and edge in that a narrow range of frequencies (1,585-2,500 Hz) has lower sound attenuation than lower or higher frequencies. Attenuation increases rapidly above 2,500 Hz. Bird sounds from species occurring at the lower forest levels were found to be predominantly pure tonelike with a frequency emphasized averaging 2,200 Hz, conforming to the predictions based on sound propagation tests. The edge habitat is characterized by a wide range of frequencies having a generally similar attenuation rate. Pure tone and random noise band sounds did not diffe...

1,373 citations

Book
07 Mar 1996
TL;DR: In this article, the authors present a general analysis of active structural acyclic control (ASAC) for plate systems, including the use of piezoelectric error sensors in ASAC.
Abstract: Introduction to Mechanical Vibrations: Terminology. Single-degree-of-freedom (SDOF) Systems. Free Motion of SDOF Systems. Damped Motion of SDOF Systems. Forced Response of SDOF Systems. Transient Response of SDOF Systems. Multi-degree-of-freedom (MDOF) Systems. Free Motion of MDOF Systems. Forced Response of MDOF Systems. Damped Motion of MDOF Systems. Finite Element Analysis of Vibrating Mechanical Systems. Introduction to Waves in Structures: Longitudinal Waves. Flexural Waves. Flexural Response of an Infinite Beam to an Oscillating Point Force. Flexural Wave Power Flow. Flexural Response of an Infinite Thin Beam to an Oscillating Line Moment. Free Flexural Motion of Finite Thin Beams. Response of a Finite Thin Beam to an Arbitrary Oscillating Force Distribution. Vibration of Thin Plates. Free Vibration of Thin Plates. Response of a Thin Rectangular Simply Supported Plate to an Arbitrary Oscillating Force Distribution. Vibration of Infinite Thin Cylinders. Free Vibration of Finite Thin Cylinders. Harmonic Forced Vibration of Infinite Thin Cylinders. Feedback Control: Single-channel Feedback Control. Stability of a Single-Channel System. Modification of the Response of an SDOF System. The Effect of Delays in the Feedback Loop. The State Variable Approach. Example of a Two-degree-of-freedom System. Output Feedback and State Feedback. State Estimation and Observers. Optimal Control. Modal Control. Feedforward Control: Single Channel Feedforward Control. The Effect of Measurement Noise. Adaptive Digital Controllers. Multichannel Feedforward Control. Adaptive Frequency Domain Controllers. Adaptive Time Domain Controllers. Equivalent Feedback Controller Interpretation. Distributed Transducers for Active Control of Vibration. Active Control of Vibration in Structures: Feedforward Control of Finite Structures. Feedback Control of Finite Structures. Feedforward Control of Wave Transmission. Actuator Arrays for Control of Flexural Waves. Sensor Arrays for Control of Flexural Waves. Feedforward Control of Flexural Waves. Feedback Control of Flexural Waves. Active Isolation of Vibrations: Isolation of Periodic Vibrations of an SDOF System. Vibration Isolation From a Flexible Receiver the Effects of Secondary Force Location. Active Isolation of Periodic Vibrations Using Multiple Secondary Force Inputs. Finite Element Analysis of an Active System for the Isolation of Periodic Vibrations. Practical Examples of Multi-Channel Feedforward Control for the Isolation of Periodic Vibrations. Isolation of Unpredictable Vibrations from a Receiving Structure. Isolation of Vibrating Systems from Random External Excitation the Possibilities for Feedforward Control. Isolation of Vibrating Systems from Random External Excitation Analysis of Feedback Control Strategies. Isolation of Vibrating Systems from Random External Excitation Formulation in Terms of Modern Control Theory. Active Isolation of Vehicle Vibrations from Road and Track Irregularities. Active Structural Acoustic Control, I. Plate Systems: Sound Radiation by Planar Vibrating Surfaces the Rayleigh Integral. The Calculation of Radiated Sound Fields by Using Wavenumber Fourier Transforms. Sound Power Radiation From Structures in Terms of Their Multi-Modal Response. General Analysis of Active Structural Acoustic Control (ASAC) for Plate Systems. Active Control of Sound Transmission Through a Rectangular Plate Using Point Force Actuators. Active Control of Structurally Radiated Sound Using Multiple Piezoelectric Actuator Interpretation of Behaviour in Terms of the Spatial Wavenumber Spectrum. The Use of Piezoelectric Distributed Structural Error Sensors in ASAC. An Example of the Implementation of Feedforward ASAC. Feeback Control of Sound Radiation From a Vibrating Baffled Piston. Feedback Control of Sound Radiation From Distributed Elastic Structures. Active Structural Acoustic Control, II. Cylinder Systems: Coupled Cylinder Acoustic Fields. Response of an Infinite Cylinder to a Harmonic Forcing Function. Active Control of Cylinder Interior Acoustic Fields Using Point Forces. Active Control of Vibration and Acoustic Transmission in Fluid-Filled Piping Systems. Active Control of Sound Radiation From Vibrating Cylinders. Active Control of Sound in Finite Cylinder Systems. Control of Interior Noise in a Full Scale Jet Aircraft Fuselage. Appendix. References. Index.

1,055 citations

Journal ArticleDOI
TL;DR: Geoacoustic models of the sea floor are basic to underwater acoustics and to marine geological and geophysical studies of the earth's crust, including stratigraphy, sedimentology, geomorphology, structural and gravity studies, geologic history, and many others as mentioned in this paper.
Abstract: Geoacoustic models of the sea floor are basic to underwater acoustics and to marine geological and geophysical studies of the earth’s crust, including stratigraphy, sedimentology, geomorphology, structural and gravity studies, geologic history, and many others A ’’geoacoustic model’’ is defined as a model of the real sea floor with emphasis on measured, extrapolated, and predicted values of those properties important in underwater acoustics and those aspects of geophysics involving sound transmission In general, a geoacoustic model details the true thicknesses and properties of sediment and rock layers in the sea floor A complete model includes water‐mass data, a detailed bathymetric chart, and profiles of the sea floor (to obtain relief and slopes) At higher sound frequencies, the investigator may be interested in only the first few meters or tens of meters of sediments At lower frequencies information must be provided on the whole sediment column and on properties of the underlying rocks Complete geoacoustic models are especially important to the acoustician studying sound interactions with the sea floor in several critical aspects: they guide theoretical studies, help reconcile experiments at sea with theory, and aid in predicting the effects of the sea floor on sound propagation The information required for a complete geoacoustic model should include the following for each sediment and rock layer In some cases, the state‐of‐the‐art allows only rough estimates, in others information may be nonexistent (1) Identification of sediment and rock types at the sea floor and in the underlying layers (2) True thicknesses and shapes of layers, and locations of significant reflectors (which may vary with sound frequencies) For the following properties, information is required in the surface of the sea floor, in the surface of the acoustic basement, and values of the property as a function of depth in the sea floor (3) Compressional wave (sound) velocity (4) Shear wave velocity (5) Attenuation of compressional waves (6) Attenuation of shear waves (7) Density (8) Additional elastic properties (eg, dynamic rigidity and Lame’s constant); given compressional and shear wave velocities and density, these and other elastic properties can be computed There is an almost infinite variety of geoacoustic models; consequently, the floor of the world’s ocean cannot be defined by any single model or even a small number of models; therefore, it is important that acoustic and geophysical experiments at sea be supported by a particular model, or models, of the area However, it is possible to use geological and geophysical judgement to extrapolate models over wider areas within geomorphic provinces To extrapolate models requires water‐mass data (such as from Nansen casts and velocimeter lowerings), good bathymetric charts, sediment and rock information from charts, cores, and the Deep Sea Drilling Project, echo‐sounder profiles, reflection and refraction records (which show detailed and general layering and the location of the acoustic basement), sound velocities in the layers, and geological and geophysical judgement Recent studies have provided much new information which, with older data, yield general values and restrictive parameters for many properties of marine sediments and rocks These general values and parameters, and methods for their derivation, are the main subjects of this paper

885 citations

Journal ArticleDOI
31 Jan 2014-Science
TL;DR: The acoustic analog of the Zeeman effect in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid is introduced, producing giant acoustic nonreciprocity in a compact device.
Abstract: Acoustic isolation and nonreciprocal sound transmission are highly desirable in many practical scenarios. They may be realized with nonlinear or magneto-acoustic effects, but only at the price of high power levels and impractically large volumes. In contrast, nonreciprocal electromagnetic propagation is commonly achieved based on the Zeeman effect, or modal splitting in ferromagnetic atoms induced by a magnetic bias. Here, we introduce the acoustic analog of this phenomenon in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid. The resulting angular momentum bias splits the ring’s azimuthal resonant modes, producing giant acoustic nonreciprocity in a compact device. We applied this concept to build a linear, magnetic-free circulator for airborne sound waves, observing up to 40-decibel nonreciprocal isolation at audible frequencies.

840 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
76% related
Transducer
58.1K papers, 681.8K citations
75% related
Noise
110.4K papers, 1.3M citations
75% related
Ultrasonic sensor
80.9K papers, 761K citations
74% related
Noise (signal processing)
61K papers, 621.1K citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023103
2022156
2021114
2020162
2019187
2018197