scispace - formally typeset
Search or ask a question
Topic

South Pole Telescope

About: South Pole Telescope is a research topic. Over the lifetime, 562 publications have been published within this topic receiving 49177 citations. The topic is also known as: SPT & The South Pole Telescope.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient line-of-sight method was implemented to calculate the anisotropy and polarization of the cosmic microwave background for scalar and tensor modes in almost Friedmann-Robertson-Walker models with positive spatial curvature.
Abstract: We implement the efficient line-of-sight method to calculate the anisotropy and polarization of the cosmic microwave background for scalar and tensor modes in almost Friedmann-Robertson-Walker models with positive spatial curvature. We present new results for the polarization power spectra in such models.

4,332 citations

Journal ArticleDOI
TL;DR: The South Pole Telescope (SPT) as mentioned in this paper is a 10m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multicolor, millimeter-wave, bolometer camera.
Abstract: .The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966 pixel, multicolor, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2, and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zel’dovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation.

626 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown  +282 moreInstitutions (70)
TL;DR: In this article, the authors presented cluster counts and corresponding cosmological constraints from the Planck full mission data set and extended their analysis to the two-dimensional distribution in redshift and signal-to-noise.
Abstract: We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1−b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1−b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.

606 citations

Journal ArticleDOI
Lindsey Bleem1, Lindsey Bleem2, B. Stalder3, T. de Haan4, K. A. Aird1, Steven W. Allen5, Steven W. Allen6, Douglas Applegate, Matthew L. N. Ashby3, Mark W. Bautz7, Matthew B. Bayliss3, Bradford Benson8, Bradford Benson1, Sebastian Bocquet9, Mark Brodwin10, John E. Carlstrom, C. L. Chang2, C. L. Chang1, I-Non Chiu9, Hsiao-Mei Cho11, Alejandro Clocchiatti12, T. M. Crawford1, A. T. Crites1, A. T. Crites13, Shantanu Desai9, J. P. Dietrich9, Matt Dobbs4, Matt Dobbs14, R. J. Foley15, R. J. Foley3, William R. Forman3, Elizabeth George16, Michael D. Gladders1, Anthony H. Gonzalez17, N. W. Halverson18, C. Hennig9, Henk Hoekstra19, Gilbert Holder4, W. L. Holzapfel20, J. D. Hrubes1, Christine Jones3, Ryan Keisler5, Ryan Keisler1, Lloyd Knox21, Adrian T. Lee22, Adrian T. Lee20, E. M. Leitch1, Jiayi Liu9, M. Lueker20, M. Lueker13, Daniel M. Luong-Van1, Adam Mantz, Daniel P. Marrone23, Michael McDonald7, Jeff McMahon24, S. S. Meyer1, L. M. Mocanu1, Joseph J. Mohr16, S. S. Murray3, Stephen Padin1, Stephen Padin13, C. Pryke25, Christian L. Reichardt26, Christian L. Reichardt20, Armin Rest27, Jonathan Ruel3, J. E. Ruhl28, Benjamin Saliwanchik28, A. Saro9, J. T. Sayre28, K. K. Schaffer1, K. K. Schaffer29, Tim Schrabback, Erik Shirokoff13, Erik Shirokoff20, Jizhou Song24, Jizhou Song30, Helmuth Spieler22, Spencer A. Stanford21, Spencer A. Stanford31, Z. K. Staniszewski13, Z. K. Staniszewski28, Antony A. Stark3, K. T. Story1, Christopher W. Stubbs3, K. Vanderlinde32, Joaquin Vieira15, Alexey Vikhlinin3, R. Williamson13, R. Williamson1, Oliver Zahn22, Oliver Zahn20, A. Zenteno9 
TL;DR: In this article, the authors presented a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg^2 of South Pole Telescope (SPT) data.
Abstract: We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg^2 of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg^2 SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M_(500c(ρcrit)) ~ 3.5 x 10^(14)M_☉ h_(70)^(-1), the median redshift is z_(med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

573 citations


Network Information
Related Topics (5)
Redshift
33.9K papers, 1.6M citations
91% related
Galaxy
109.9K papers, 4.7M citations
91% related
Star formation
37.4K papers, 1.8M citations
90% related
Luminosity
26.3K papers, 1.1M citations
90% related
Quasar
21.3K papers, 1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202253
202126
202025
201934
201843