scispace - formally typeset
Search or ask a question
Topic

Sowing

About: Sowing is a research topic. Over the lifetime, 33888 publications have been published within this topic receiving 273438 citations. The topic is also known as: seeding.


Papers
More filters
Journal ArticleDOI
TL;DR: There was no evidence to suggest that sowing a species-poor grass-dominated seed mixture made the vegetation any less susceptible to colonization by desirable species than allowing natural regeneration to take place, and natural regeneration and treatments sown with the species- poor seed mixture were much less similar to the target.
Abstract: Summary 1 Agricultural intensification has resulted in the reduction and fragmentation of species-rich grasslands across much of western Europe. 2 We examined the key ecological processes that limit the creation of diverse grassland communities on ex-arable land in a multi-site experiment over a wide variety of soil types and locations throughout lowland Britain. 3 The results showed it was possible to create and maintain these communities successfully under a hay-cutting and grazing management regime. Furthermore, there was a high degree of repeatability of the treatment effects across the sites. 4 Lack of seed of desirable species was the key factor limiting the assembly of diverse grassland communities. Sowing a species-rich seed mixture of ecologically adapted grassland plants was an effective means of overcoming this limitation. Community assembly by natural colonization from the seed bank and seed rain was a slow and unreliable process. However, there was no evidence to suggest that sowing a species-poor grass-dominated seed mixture made the vegetation any less susceptible to colonization by desirable species than allowing natural regeneration to take place. 5 Deep cultivation caused significant reductions in soil P and K concentrations across the sites. This had a significant beneficial effect on the establishment and persistence of sown forbs in all years. It also resulted in a significant reduction in the number of unsown weedy grasses. However, for both variables these differences were very small after 4 years. 6 Sowing a nurse crop significantly reduced the number of unsown grass species, but had no beneficial effect on the establishment of desirable species. 7 Treatments sown with the species-rich seed mixture following deep cultivation corresponded most closely to the specified target communities defined by the UK National Vegetation Classification. Natural regeneration and treatments sown with the species-poor seed mixture were much less similar to the target. The sites on circum-neutral soils achieved the greatest degree of similarity to the target. Those on calcareous and acid soils failed to achieve their targets and most closely resembled the target for neutral soils. This reflected the poor performance of the sown preferential species for these communities.

383 citations

Journal ArticleDOI
TL;DR: A better understanding of the mechanisms involved in the protection of rhizobia from adverse conditions will assist in defining the optimum conditions for seed inoculation and storage to ensure a higher quality product for farmers at the time of sowing.
Abstract: Inoculation of legume seed is an efficient and convenient way of introducing effective rhizobia to soil and subsequently the rhizosphere of legumes. However, its full potential is yet to be realised. Following widespread crop failures, the manufacture of high quality inoculants revolutionised legume technology in Australia in the 1960s. Many improvements to inoculants and the advent of an inoculant control service ensured that quality was optimised and maintained. Minimum standards for the number of rhizobia per seed were set after consideration of several factors including seed size and loss of viability during inoculation. Despite manufacturers' recommendations for storage and application of inoculants, there is a distinct lack of control over the inoculation process; hence the full potential of high quality products may not always be achieved. The efficacy of inoculation varies depending on several factors, all of which affect the number of viable rhizobia available for infection of legume roots. Increased numbers of viable rhizobia per seed by application of inoculant above the commercially recommended rate, results in a continued linear increase in nodulation and yield. Several studies have reported yield increases of up to 25%. However, applying higher quantities of inoculant is uneconomical and technically difficult. Alternatively, higher numbers of viable rhizobia per seed may be achieved by improving survival during seed inoculation. Despite recognition of the factors affecting survival of rhizobia on seed and a substantial demand for commercially pre-inoculated legume seed, poor survival is still a major concern. Desiccation, temperature and seed coat toxicity all influence survival of rhizobia on seed. Their adverse effects may be ameliorated by selecting tolerant rhizobial strains and legume seed cultivars with low toxicity or artificially, by the use of additives in the seed coating. The accumulation of the desiccant protectant trehalose in strains of rhizobia, may result in better survival under desiccation stress. Similarly, the accumulation of exopolysaccharide (EPS) may act as a barrier reducing excessive water loss. Polymeric adhesives such as gum arabic, methyl cellulose and polyvinyl pyrollidone (PVP) have improved survival. However, studies of additives used in inoculation have been ad hoc and little of their mode of action is understood. A better understanding of the mechanisms involved in the protection of rhizobia from adverse conditions will assist in defining the optimum conditions for seed inoculation and storage to ensure a higher quality product for farmers at the time of sowing.

378 citations

Journal ArticleDOI
TL;DR: The actinomycete Streptomyces lydicus WYEC108 showed strong in vitro antagonism against various fungal plant pathogens in plate assays by producing extracellular antifungal metabolites.
Abstract: The actinomycete Streptomyces lydicus WYEC108 showed strong in vitro antagonism against various fungal plant pathogens in plate assays by producing extracellular antifungal metabolites. When Pythium ultimum or Rhizoctonia solani was grown in liquid medium with S. lydicus WYEC108, inhibition of growth of the fungi was observed. When WYEC108 spores or mycelia were used to coat pea seeds, the seeds were protected from invasion by P. ultimum in an oospore-enriched soil. While 100% of uncoated control seeds were infected by P. ultimum within 48 h after planting, less than 40% of coated seeds were infected. When the coated seeds were planted in soil 24 h prior to introduction of the pathogen, 96 h later, less than 30% of the germinating seeds were infected. Plant growth chamber studies were also carried out to test for plant growth effects and for suppression by S. lydicus WYEC108 of Pythium seed rot and root rot. When WYEC108 was applied as a spore-peat moss-sand formulation (10(8) CFU/g) to P. ultimum-infested sterile or nonsterile soil planted with pea and cotton seeds, significant increases in average plant stand, plant length, and plant weight were observed in both cases compared with untreated control plants grown in similar soils. WYEC108 hyphae colonized and were able to migrate downward with the root as it elongated. Over a period of 30 days, the population of WYEC108 colonized emerging roots of germinating seeds and remained stable (10(5) CFU/g) in the rhizosphere, whereas the nonrhizosphere population of WYEC108 declined at least 100-fold (from 10(5) to 10(3) or fewer CFU/g). The stability of the WYEC108 population incubated at 25 degrees C in the formulation, in sterile soil, and in nonsterile soil was also evaluated. In all three environments, the population of WYEC108 maintained its size for 90 days or more. When pea, cotton, and sweet corn seeds were placed into sterile and nonsterile soils containing 10(6) or more CFU of WYEC108 per g, it colonized the emerging roots. After a 1-week growing period, WYEC108 populations of 10(5) CFU/g (wet weight) of root were found on pea roots in the amended sterile soil environment versus 10(4) CFU/g in amended nonsterile soil. To further study the in vitro interaction between the streptomycete and P. ultimum, mycelia of WYEC108 were mixed with oospores of P. ultimum in agar, which was then used as a film to coat slide coverslips.(ABSTRACT TRUNCATED AT 400 WORDS)

369 citations

Journal ArticleDOI
TL;DR: Increasingly, commercial seed treaters are beginning to view seed treatments as a means to substantially increase the value of the seed and to improve plant growth and productivity.
Abstract: Seed treatments are used on many crop seeds for a variety of purposes. The greatest use of seed treatments has been to provide an inexpensive insurance against rotting of planted seeds by soil fungi such as Pythium spp. and Rhizoctonia solani. Seed treatments for many other purposes are being de­ veloped and used. Increasingly, commercial seed treaters are beginning to view seed treatments as a means to substantially increase the value of the seed and to improve plant growth and productivity. Examples of other types of seed treatments are: (a) treatment with systemic chemicals that can translocate into the seed to control deep-seated plant pathogens. Several chemicals also translocate to the above-ground portions of the seedling and protect against foliar diseases; (b) treatment with microor­ ganisms that can proliferate on the seed, transfer to the root and fix N2, enhance uptake of nutrients, protect the subterranean plant portions against attack by soil-inhabiting fungi, and/or increase plant growth; (c) physical treatments that control seedbome pathogens; (d) seed coatings or pellets that can improve seed shape for planting or provide other benefits; (e) physiolog­ ical seed treatments that enhance germination rate and plant performance; and (j) various treatments that affect seed moistUre relationships and result in improved seed storability or performance.

355 citations


Network Information
Related Topics (5)
Soil fertility
33.7K papers, 859.4K citations
92% related
Shoot
32.1K papers, 693.3K citations
90% related
Germination
51.9K papers, 877.9K citations
90% related
Soil pH
23.9K papers, 624.4K citations
87% related
Agriculture
80.8K papers, 1.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,551
20225,773
2021919
20201,657
20192,181