scispace - formally typeset
Search or ask a question
Topic

Soybean oil

About: Soybean oil is a research topic. Over the lifetime, 11154 publications have been published within this topic receiving 234952 citations. The topic is also known as: soya oil & soy bean oil.


Papers
More filters
Journal ArticleDOI
TL;DR: This article showed that thermally oxidized compounds had a significant effect on the volatile compound formatiion and molecular oxygen disappearance in the headspace of oil at α = 0.05.
Abstract: Soybean oil purified by silicic acid column chromatography did not contain peroxides, free fatty acids, phospholipids or oxidized polar compounds. The purified soybean oil was thermally oxidized at 180°C for 96 hr in the presence of air. The thermally oxidized compounds (31.3%) were separated from the purified soybean oil by gradient elution silicic acid chromatography. Thermally oxidized compounds contained hydroxyl groups, carbonyl groups andtrans double bonds according to the infrared spectrum. Thermally oxidized compounds were added to soybean oil and purified soybean oil at 0, 0.5, 1.0, 1.5 and 2.0% to study the effects of these compounds on the oxidative stability of oil. The oxidative stabilities of oils were determined by gas chromatographic analysis of volatile compound formation and molecular oxygen disappearance in the headspace of oil bottles. The thermally oxidized compounds showed prooxidant effects on the oxidative stabilities of both refined, bleached and deodorized soybean oil and purified soybean oil. Duncan’s Multiple Range Test showed that thermally oxidized compounds had a significant effect on the volatile compound formatiion and oxygen disappearance in the headspace of oil at α=0.05.

71 citations

Journal ArticleDOI
TL;DR: The results suggest that vegetable oil as a replacement for fish oil influence the arachidonic acid level in phospholipids of vertebrae, may slightly increase production of PGE 2 in blood, and reduce vertebre mineralization around the sensitive smoltification phase.

71 citations

Journal ArticleDOI
TL;DR: In this article, the ability of bis(acetyl-acetonato)dioxo-molybdenum (VI) [MoO 2 (acac) 2 ] to catalyse the epoxidation of soybean oil in the presence of tert -butyl hydroperoxide as oxidizing agent has been investigated by quantitative 1 H NMR.
Abstract: The ability of bis(acetyl-acetonato)dioxo-molybdenum (VI) [MoO 2 (acac) 2 ] to catalyse the epoxidation of soybean oil in the presence of tert -butyl hydroperoxide as oxidizing agent has been investigated. The influence of reaction time and temperature in the course of the epoxidation reaction was evaluated by quantitative 1 H NMR. When epoxidation was carried out in refluxing toluene at 110 °C for 2 h, a 70.1% conversion of substrate was obtained, producing 54.1% epoxidation with a selectivity of 77.2%. The 1 H NMR spectroscopic method selected for the purpose of this work allowed a simple and rapid evaluation of the mono- and diepoxides obtained following the epoxidation of soybean oil.

71 citations

Journal ArticleDOI
TL;DR: Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities.
Abstract: Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75-90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.

71 citations

Book ChapterDOI
02 Nov 2011
TL;DR: The objective is to describe the basic processes affecting yield formation in soybean and to apply this information to development of management and genetic strategies for increasing soybean yield.
Abstract: Soybean [Glycine max (L.) Merr.; family leguminosae, sub family Papilionoideae; tribe Phaseoleae] is the most important oilseed crop grown in the world (56% of world oil seed production) (US Soybean Export Council, 2008). Major producers are the US (33% of world production), followed closely by Brazil (28%) and Argentina (21%). Remaining producers are China, India, and a few other countries. Currently, soybean is grown on about 90.5 million hectares throughout the world with total production of nearly 220 million metric tons (US Soybean Export Council, 2008). At current prices, total value of the world’s soybean crop is about $100 billion. Soybean is used as human food in East Asia, but is predominately crushed into meal and oil in the US, Argentina, and Brazil; and then used for human food (as cooking oil, margarine, etc.) or livestock feed (Wilcox, 2004). These uses are derived from the crop’s high oil (18%) and protein (38%) content. Soybean meal is a preferred livestock feed because of its high protein content (50%) and low fiber content. Soybean oil is mainly used by food processors in baked and fried food products or bottled into cooking oil. Other uses are biodiesel products and industrial uses. Global demand for soybean has been increasing over the last several years because of rapid economic growth in the developing world and depreciation of the US dollar (US Soybean Export Council, 2008). In response to this demand, world production has been increasing through a combination of increased production area and greater yield. Among major producers, most of this increase in Argentina and Brazil has come from increased production area, whereas in the US it has come from increased yield (US Soybean Export Council, 2008). However, over the last 10 years US soybean yields have been increasing by only 66 kg ha-1 yr-1 compared to 396 kg ha-1 yr-1 for corn (USDA, 2007). An even greater problem is the disparity in yield between the three main producing countries [US, Argentina, and Brazil (2,800 kg ha-1)] and that in the remainder of the world (1,510 kg ha-1) (US Soybean Export Council, 2008). Because of the limited potential for increasing production area, it is very important that yield be accelerated in order to meet increasing global demand. Our objective is to describe the basic processes affecting yield formation in soybean and to apply this information to development of management and genetic strategies for increasing soybean yield. First, we will outline potential yield gains possible with management modifications in soybean. Secondly, the main abiotic and biotic stresses will be detailed describing their modes of action on yield.

71 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
85% related
Polyunsaturated fatty acid
35.4K papers, 1.2M citations
83% related
Starch
50.2K papers, 1M citations
82% related
Fermentation
68.8K papers, 1.2M citations
80% related
Vitamin E
23.6K papers, 801.4K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023160
2022329
2021335
2020359
2019435
2018593