scispace - formally typeset
Search or ask a question
Topic

Soybean oil

About: Soybean oil is a research topic. Over the lifetime, 11154 publications have been published within this topic receiving 234952 citations. The topic is also known as: soya oil & soy bean oil.


Papers
More filters
Journal ArticleDOI
01 Nov 2009-Animal
TL;DR: The results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed.
Abstract: The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (P < 0.05) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.

126 citations

Journal ArticleDOI
TL;DR: While both amount and source of co-consumed lipid affect carotenoid bioavailability from vegetables, amount appears to exert a stronger effect.
Abstract: cope Dietary lipids are considered to be primary potentiators of carotenoid absorption, yet the amount and source required to optimize bioavailability has not been systematically evaluated. The objective of this study was to examine the impact of both amount and source of triacylglycerols on postprandial absorption of carotenoids from vegetable salads. Methods and results Healthy subjects (n = 29) were randomized using a Latin square design (3×3) and consumed three identical salads with 3, 8, or 20 g of canola oil, soybean oil, or butter. Blood was collected from 0–10 h and triacylglycerol-rich fractions (TRLs) were isolated by ultracentrifugation. Carotenoid contents of TRL fractions were analyzed by HPLC-DAD. Considering all lipid sources, 20 g of lipid promoted higher absorption compared to 3 and 8 g for all carotenoid species (p < 0.05), except for α-carotene (p = 0.07). The source of lipid had less impact on the absorption of carotenoids than amount of lipid. Pooling results from all lipid amounts, monounsaturated fatty acid rich canola oil trended toward enhancing absorption of lutein and α-carotene compared to saturated fatty acid rich butter (p = 0.06 and p = 0.08, respectively). Conclusion While both amount and source of co-consumed lipid affect carotenoid bioavailability from vegetables, amount appears to exert a stronger effect.

125 citations

Journal ArticleDOI
TL;DR: In this article, methanolic extracts of peanut hulls (MEPH) were evaluated in soybean and peanut oils after accelerated oxidation at 60°C, and the results showed that the oils with 0.12, 0.48, and 1.20% MEPH had significantly (P<0.05) lower peroxide values and acid values than the control.
Abstract: Antioxidant activity of methanolic extracts of peanut hulls (MEPH) was evaluated in soybean and peanut oils after accelerated oxidation at 60°C. Results showed that the oils with 0.12, 0.48, and 1.20% MEPH had significantly (P<0.05) lower peroxide values and acid values than the control after storage at 60°C. Moreover, oils with 0.48 and 1.20% MEPH were significantly (P<0.05) superior to 0.02% butylated hydroxyanisole (BHA) in reducing oxidation of both oils. Negative synergism was observed when 0.48 and 1.20% MEPH were mixed with 0.01% dl-α-tocopherol or 0.01% BHA in soybean oil compared to MEPH alone.

125 citations

Journal ArticleDOI
TL;DR: In this paper, the kinetics, mass transfer and heat transfer of soybean oil epoxidation with H 2 O 2 have been studied in a fed and pulse-fed-batch reactor.

124 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
85% related
Polyunsaturated fatty acid
35.4K papers, 1.2M citations
83% related
Starch
50.2K papers, 1M citations
82% related
Fermentation
68.8K papers, 1.2M citations
80% related
Vitamin E
23.6K papers, 801.4K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023160
2022329
2021335
2020359
2019435
2018593