scispace - formally typeset
Search or ask a question
Topic

Spark-ignition engine

About: Spark-ignition engine is a research topic. Over the lifetime, 4352 publications have been published within this topic receiving 66550 citations.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, the effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated.
Abstract: Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of heat and mass transfer on the combustion process of a hydrogen-fueled spark-ignition engine, using an in-house CFD code, is investigated, where the calculated local heat fluxes with the available measured ones, using three heat transfer models of increasing complexity (two existing and one developed by the authors).

29 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent progress and development trends of pre-chamber ignition systems adopted on future low-carbon and low-emission spark ignition engines is presented in this paper.
Abstract: Legislations for greenhouse gas and pollutant emissions from light-duty vehicles are pushing the spark ignition engine to be cleaner and more efficient. As one of the promising solutions, enhancing the ignition energy shows great potential in simultaneously mitigating combustion knock and enabling lean-burn operation. Featured with distributed ignition sites, pre-chamber ignition systems with large or small pre-chamber volumes, auxiliary or no auxiliary fueling, and large or small orifices have gained a surge of interest in decreasing the fuel consumption and pollutant emissions. This paper aims at presenting a comprehensive review of recent progress and development trends of pre-chamber ignition systems adopted on future low-carbon and low-emission spark ignition engines. First, mechanisms behind this technology are discussed from the perspectives of the pre-chamber scavenging and combustion, jet ejection, main chamber combustion, and emission formations. Second, the design criteria of pre-chamber geometries are presented in detail, followed by a discussion on the fuel and air management for the main chamber. Next, recent numerical and experimental studies on the pre-chamber ignition system and its applications in conjunction with other complementary technologies are summarized. Finally, critical issues for commercialization and future research directions are discussed.

29 citations

Journal ArticleDOI
15 Sep 2016-Fuel
TL;DR: In this article, a comparative analysis of performance, exhaust and noise emissions for a one-cylinder, four-stroke, spark-ignition engine powered by gasoline fuels of two different grades of research octane numbers (RONs), namely octane 90, and octane 95, was presented.

29 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the ambient temperature and the amount of fuel injected per cycle on the cold-start firing behavior as well as the combustion and the hydrocarbon emissions of an electronically controlled inlet port injection spark-ignition (SI) engine fueled with gasoline and methanol, respectively, during the cold start were studied experimentally by means of a single-cycle fuel injection strategy.
Abstract: The effects of the ambient temperature and the amount of fuel injected per cycle on the cold-start firing behavior as well as the combustion and the hydrocarbon (HC) emissions of an electronically controlled inlet port injection spark-ignition (SI) engine fueled with gasoline and methanol, respectively, during the cold start were studied experimentally by means of a single-cycle fuel injection strategy. The results showed that the amount of fuel injected per cycle significantly affects the gasoline-fueled engine cold-start reliability. A proper amount of fuel injected per cycle ensures a reliable start of the gasoline-fueled engine. The ambient temperature affects most significantly the cold-start ability of the methanol-fueled engine, and the amount of methanol injected per cycle takes second place. With the ambient temperature below 16 °C, the methanol-fueled engine cannot be started reliably without auxiliary start aid even with a large amount of methanol injection under low injection pressure. Using a...

29 citations


Network Information
Related Topics (5)
Internal combustion engine
130.5K papers, 1M citations
92% related
Combustion
172.3K papers, 1.9M citations
88% related
Diesel fuel
55.4K papers, 953.3K citations
86% related
Heat exchanger
184.2K papers, 1M citations
79% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202388
2022168
2021201
2020168
2019211
2018211