scispace - formally typeset
Search or ask a question
Topic

Spark-ignition engine

About: Spark-ignition engine is a research topic. Over the lifetime, 4352 publications have been published within this topic receiving 66550 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new numerical approach is developed and integrated into the ignition model of an in-house computational fluid dynamics (CFD) code, with the aim to estimate the effect of this highly-complex phenomenon in engines.

21 citations

Proceedings ArticleDOI
01 Feb 1996
TL;DR: In this article, the authors present ODECS (Optimal design of Engine Control Strategies) for the design of Spark Ignition engine control strategies, which is composed of a user interface for the definition, the execution and the analysis of different computations performed with four independent modules.
Abstract: The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to a vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robustmore » strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

21 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the combustion characteristics and cycle-by-cycle variation of a turbocharged, gasoline direct injected spark ignition (DISI) engine at a wide range of operating conditions.
Abstract: The main challenge facing the concept of gasoline direct injection is the unfavourable physical conditions at which the premixed charge is prepared and burned. These conditions include the short time available for gasoline to be sprayed, evaporated, and homogeneously mixed with air. These conditions most probably affect the combustion process and the cycle-by-cycle variation and may be reflected in overall engine operation. The aim of this research is to analyze the combustion characteristics and cycle-by-cycle variation including engine-out nanoparticulates of a turbocharged, gasoline direct injected spark ignition (DISI) engine at a wide range of operating conditions. Gasoline DISI, turbo-intercooled, 1.6L, 4 cylinder engine has been used in the study. In-cylinder pressure has been measured using spark plug mounted piezoelectric transducer along with a PC based data acquisition. A single zone heat release model has been used to analyze the in-cylinder pressure data. The analysis of the combustion characteristics includes the flame development (0–10% burned mass fraction) and rapid burn (10–90% burned mass fraction) durations at different engine conditions. The cycle-by-cycle variations have been characterized by the coefficient of variations (COV) in the peak cylinder pressure, the indicated mean effective pressure (IMEP), burn durations, and particle number density. The combustion characteristics and cyclic variability of the DISI engine are compared with data from throttle body injected (TBI) engine and conclusions are developed.

21 citations


Network Information
Related Topics (5)
Internal combustion engine
130.5K papers, 1M citations
92% related
Combustion
172.3K papers, 1.9M citations
88% related
Diesel fuel
55.4K papers, 953.3K citations
86% related
Heat exchanger
184.2K papers, 1M citations
79% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202388
2022168
2021201
2020168
2019211
2018211