scispace - formally typeset
Search or ask a question
Topic

Sparse approximation

About: Sparse approximation is a research topic. Over the lifetime, 18037 publications have been published within this topic receiving 497739 citations. The topic is also known as: Sparse approximation.


Papers
More filters
Journal ArticleDOI
18 Feb 2000-Science
TL;DR: Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes, but this issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision.
Abstract: Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual V1 neurons, increases the sparseness of the population response distribution, and strongly decorrelates the responses of neuron pairs. These effects are due to both excitatory and suppressive modulation of the classical receptive field by the nonclassical receptive field and do not depend critically on the spatiotemporal structure of the stimuli. During natural vision, the classical and nonclassical receptive fields function together to form a sparse representation of the visual world. This sparse code may be computationally efficient for both early vision and higher visual processing.

1,270 citations

Journal ArticleDOI
TL;DR: Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.
Abstract: As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of the l1-norm optimization techniques and the fact that natural images are intrinsically sparse in some domains. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a precollected dataset of example image patches, and then, for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image nonlocal self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.

1,253 citations

Journal ArticleDOI
TL;DR: This paper studies two iterative algorithms that are minimising the cost functions of interest and adapts the algorithms and shows on one example that this adaptation can be used to achieve results that lie between those obtained with Matching Pursuit and those found with Orthogonal Matching pursuit, while retaining the computational complexity of the Matching pursuit algorithm.
Abstract: Sparse signal expansions represent or approximate a signal using a small number of elements from a large collection of elementary waveforms. Finding the optimal sparse expansion is known to be NP hard in general and non-optimal strategies such as Matching Pursuit, Orthogonal Matching Pursuit, Basis Pursuit and Basis Pursuit De-noising are often called upon. These methods show good performance in practical situations, however, they do not operate on the l0 penalised cost functions that are often at the heart of the problem. In this paper we study two iterative algorithms that are minimising the cost functions of interest. Furthermore, each iteration of these strategies has computational complexity similar to a Matching Pursuit iteration, making the methods applicable to many real world problems. However, the optimisation problem is non-convex and the strategies are only guaranteed to find local solutions, so good initialisation becomes paramount. We here study two approaches. The first approach uses the proposed algorithms to refine the solutions found with other methods, replacing the typically used conjugate gradient solver. The second strategy adapts the algorithms and we show on one example that this adaptation can be used to achieve results that lie between those obtained with Matching Pursuit and those found with Orthogonal Matching Pursuit, while retaining the computational complexity of the Matching Pursuit algorithm.

1,246 citations

Proceedings Article
16 Jun 2013
TL;DR: A new general framework for convex optimization over matrix factorizations, where every Frank-Wolfe iteration will consist of a low-rank update, is presented, and the broad application areas of this approach are discussed.
Abstract: We provide stronger and more general primal-dual convergence results for Frank-Wolfe-type algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approximately (as well as if the gradients are inexact), and is proven to be worst-case optimal in the sparsity of the obtained solutions. On the application side, this allows us to unify a large variety of existing sparse greedy methods, in particular for optimization over convex hulls of an atomic set, even if those sets can only be approximated, including sparse (or structured sparse) vectors or matrices, low-rank matrices, permutation matrices, or max-norm bounded matrices. We present a new general framework for convex optimization over matrix factorizations, where every Frank-Wolfe iteration will consist of a low-rank update, and discuss the broad application areas of this approach.

1,246 citations

Proceedings Article
04 Dec 2006
TL;DR: A novel unsupervised method for learning sparse, overcomplete features using a linear encoder, and a linear decoder preceded by a sparsifying non-linearity that turns a code vector into a quasi-binary sparse code vector.
Abstract: We describe a novel unsupervised method for learning sparse, overcomplete features. The model uses a linear encoder, and a linear decoder preceded by a sparsifying non-linearity that turns a code vector into a quasi-binary sparse code vector. Given an input, the optimal code minimizes the distance between the output of the decoder and the input patch while being as similar as possible to the encoder output. Learning proceeds in a two-phase EM-like fashion: (1) compute the minimum-energy code vector, (2) adjust the parameters of the encoder and decoder so as to decrease the energy. The model produces "stroke detectors" when trained on handwritten numerals, and Gabor-like filters when trained on natural image patches. Inference and learning are very fast, requiring no preprocessing, and no expensive sampling. Using the proposed unsupervised method to initialize the first layer of a convolutional network, we achieved an error rate slightly lower than the best reported result on the MNIST dataset. Finally, an extension of the method is described to learn topographical filter maps.

1,204 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
93% related
Image segmentation
79.6K papers, 1.8M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
92% related
Deep learning
79.8K papers, 2.1M citations
90% related
Image processing
229.9K papers, 3.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022454
2021641
2020924
20191,208
20181,371