scispace - formally typeset
Search or ask a question
Topic

Sparse approximation

About: Sparse approximation is a research topic. Over the lifetime, 18037 publications have been published within this topic receiving 497739 citations. The topic is also known as: Sparse approximation.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper casts the tracking problem as finding the candidate that scores highest in the evaluation model based upon a matrix called discriminative sparse similarity map (DSS map), and a pooling approach is proposed to extract the discrim inative information in the DSS map for easily yet effectively selecting good candidates from bad ones and finally get the optimum tracking results.
Abstract: In this paper, we cast the tracking problem as finding the candidate that scores highest in the evaluation model based upon a matrix called discriminative sparse similarity map (DSS map). This map demonstrates the relationship between all the candidates and the templates, and it is constructed based on the solution to an innovative optimization formulation named multitask reverse sparse representation formulation, which searches multiple subsets from the whole candidate set to simultaneously reconstruct multiple templates with minimum error. A customized APG method is derived for getting the optimum solution (in matrix form) within several iterations. This formulation allows the candidates to be evaluated accurately in parallel rather than one-by-one like most sparsity-based trackers do and meanwhile considers the relationship between candidates, therefore it is more superior in terms of cost-performance ratio. The discriminative information containing in this map comes from a large template set with multiple positive target templates and hundreds of negative templates. A Laplacian term is introduced to keep the coefficients similarity level in accordance with the candidates similarities, thereby making our tracker more robust. A pooling approach is proposed to extract the discriminative information in the DSS map for easily yet effectively selecting good candidates from bad ones and finally get the optimum tracking results. Plenty experimental evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods.

147 citations

Journal ArticleDOI
TL;DR: An off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry is introduced, and an efficient sparse Bayesian learning approach for the sparse channel recovery and off- grid refinement is proposed.
Abstract: This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization–minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

147 citations

Journal ArticleDOI
TL;DR: Two strategies to decrease the computational complexity of SSC are designed, making a robust, accurate and efficient deformable segmentation system and improve the overall accuracy.

147 citations

Journal ArticleDOI
TL;DR: The development of three component-specific feature descriptors for each monogenic component is produced first and the resulting features are fed into a joint sparse representation model to exploit the intercorrelation among multiple tasks.
Abstract: In this paper, the classification via sprepresentation and multitask learning is presented for target recognition in SAR image. To capture the characteristics of SAR image, a multidimensional generalization of the analytic signal, namely the monogenic signal, is employed. The original signal can be then orthogonally decomposed into three components: 1) local amplitude; 2) local phase; and 3) local orientation. Since the components represent the different kinds of information, it is beneficial by jointly considering them in a unifying framework. However, these components are infeasible to be directly utilized due to the high dimension and redundancy. To solve the problem, an intuitive idea is to define an augmented feature vector by concatenating the components. This strategy usually produces some information loss. To cover the shortage, this paper considers three components into different learning tasks, in which some common information can be shared. Specifically, the component-specific feature descriptor for each monogenic component is produced first. Inspired by the recent success of multitask learning, the resulting features are then fed into a joint sparse representation model to exploit the intercorrelation among multiple tasks. The inference is reached in terms of the total reconstruction error accumulated from all tasks. The novelty of this paper includes 1) the development of three component-specific feature descriptors; 2) the introduction of multitask learning into sparse representation model; 3) the numerical implementation of proposed method; and 4) extensive comparative experimental studies on MSTAR SAR dataset, including target recognition under standard operating conditions, as well as extended operating conditions, and the capability of outliers rejection.

147 citations

Journal ArticleDOI
TL;DR: A survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition, and the applications of sparse theory to various visual recognition tasks are introduced.

146 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
93% related
Image segmentation
79.6K papers, 1.8M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
92% related
Deep learning
79.8K papers, 2.1M citations
90% related
Image processing
229.9K papers, 3.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022454
2021641
2020924
20191,208
20181,371