scispace - formally typeset
Search or ask a question
Topic

Sparse approximation

About: Sparse approximation is a research topic. Over the lifetime, 18037 publications have been published within this topic receiving 497739 citations. The topic is also known as: Sparse approximation.


Papers
More filters
Book ChapterDOI
28 Aug 2006
TL;DR: A simple random-sampling based procedure for producing sparse matrix approximations that computes the sparse matrix approximation in a single pass over the data, leading to much savings in space.
Abstract: We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previous work. Our algorithm computes the sparse matrix approximation in a single pass over the data. Further, most of the entries in the output matrix are quantized, and can be succinctly represented by a bit vector, thus leading to much savings in space.

118 citations

Proceedings ArticleDOI
19 Apr 2009
TL;DR: A weighted version of the recursive Lasso scheme with weights obtained from the recursive least-squares (RLS) algorithm is developed, which provably estimates sparse signals consistently.
Abstract: The batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications, where observations adhere to parsimonious linear regression models. To cope with linearly growing complexity and memory requirements that batch Lasso estimators face when processing observations sequentially, the present paper develops a recursive Lasso algorithm that can also track slowly-varying sparse signals of interest. Performance analysis reveals that recursive Lasso can either estimate consistently the sparse signal's support or its nonzero entries, but not both. This motivates the development of a weighted version of the recursive Lasso scheme with weights obtained from the recursive least-squares (RLS) algorithm. The resultant RLS-weighted Lasso algorithm provably estimates sparse signals consistently. Simulated tests compare competing alternatives and corroborate the performance of the novel algorithms in estimating time-invariant and tracking slow-varying signals under sparsity constraints.

118 citations

Journal ArticleDOI
TL;DR: The sparse group lasso optimization problem is solved using a coordinate gradient descent algorithm that is applicable to a broad class of convex loss functions and the algorithm is used to investigate the performance of the multinomial sparsegroup lasso classifier.

118 citations

Book ChapterDOI
01 Jan 2015
TL;DR: In this article, the authors present a visual analytic system called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization) for text clustering and topic modeling.
Abstract: Nonnegative matrix factorization (NMF) approximates a nonnegative matrix by the product of two low-rank nonnegative matrices. Since it gives semantically meaningful result that is easily interpretable in clustering applications, NMF has been widely used as a clustering method especially for document data, and as a topic modeling method.We describe several fundamental facts of NMF and introduce its optimization framework called block coordinate descent. In the context of clustering, our framework provides a flexible way to extend NMF such as the sparse NMF and the weakly-supervised NMF. The former provides succinct representations for better interpretations while the latter flexibly incorporate extra information and user feedback in NMF, which effectively works as the basis for the visual analytic topic modeling system that we present.Using real-world text data sets, we present quantitative experimental results showing the superiority of our framework from the following aspects: fast convergence, high clustering accuracy, sparse representation, consistent output, and user interactivity. In addition, we present a visual analytic system called UTOPIAN (User-driven Topic modeling based on Interactive NMF) and show several usage scenarios.Overall, our book chapter cover the broad spectrum of NMF in the context of clustering and topic modeling, from fundamental algorithmic behaviors to practical visual analytics systems.

118 citations

Journal ArticleDOI
TL;DR: This work proposes a transductive low-rank and sparse principal feature coding (LSPFC) formulation that decomposes given data into a component part that encodes low- rank sparse principal features and a noise-fitting error part, and presents an inductive LSPFC (I-L SPFC), which incorporates embedded low- Rank and sparse Principal features by a projection into one problem for direct minimization.
Abstract: Recovering low-rank and sparse subspaces jointly for enhanced robust representation and classification is discussed. Technically, we first propose a transductive low-rank and sparse principal feature coding (LSPFC) formulation that decomposes given data into a component part that encodes low-rank sparse principal features and a noise-fitting error part. To well handle the outside data, we then present an inductive LSPFC (I-LSPFC). I-LSPFC incorporates embedded low-rank and sparse principal features by a projection into one problem for direct minimization, so that the projection can effectively map both inside and outside data into the underlying subspaces to learn more powerful and informative features for representation. To ensure that the learned features by I-LSPFC are optimal for classification, we further combine the classification error with the feature coding error to form a unified model, discriminative LSPFC (D-LSPFC), to boost performance. The model of D-LSPFC seamlessly integrates feature coding and discriminative classification, so the representation and classification powers can be enhanced. The proposed approaches are more general, and several recent existing low-rank or sparse coding algorithms can be embedded into our problems as special cases. Visual and numerical results demonstrate the effectiveness of our methods for representation and classification.

118 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
93% related
Image segmentation
79.6K papers, 1.8M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
92% related
Deep learning
79.8K papers, 2.1M citations
90% related
Image processing
229.9K papers, 3.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022454
2021641
2020924
20191,208
20181,371