scispace - formally typeset
Search or ask a question
Topic

Sparse approximation

About: Sparse approximation is a research topic. Over the lifetime, 18037 publications have been published within this topic receiving 497739 citations. The topic is also known as: Sparse approximation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the numerical solution of Biot's equations of coupled consolidation obtained by a mixed formulation combining continuous Galerkin finite-element and multipoint flux approximation finite-volume methods is presented.
Abstract: Summary The paper deals with the numerical solution of Biot's equations of coupled consolidation obtained by a mixed formulation combining continuous Galerkin finite-element and multipoint flux approximation finite-volume methods. The solution algorithm relies on the recently developed fixed-stress solution scheme, in which first the flow problem and then the mechanical one are addressed iteratively. We show that the algorithm can be interpreted as a particular block triangular preconditioning strategy applied within a Richardson iteration. The key component to the success of the preconditioner is the sparse approximation to the Schur complement based on a pressure space mass matrix scaled by a weighting factor that depends element-wise on the inverse of a suitable bulk modulus. The accuracy of the method is assessed, making use of well-known analytical solutions from the literature. Numerical results demonstrate robustness and low computational cost of the fixed-stress scheme in accurately capturing the two-way coupling between deformation and pressure. Copyright © 2015 John Wiley & Sons, Ltd.

107 citations

Journal ArticleDOI
TL;DR: Two codes are discussed, COLAMD and SYMAMD, that compute approximate minimum degree orderings for sparse matrices in two contexts: (1) sparse partial pivoting, which requires a sparsity preserving column pre-ordering prior to numerical factorization, and (2) sparse Cholesky factorization.
Abstract: Two codes are discussed, COLAMD and SYMAMD, that compute approximate minimum degree orderings for sparse matrices in two contexts: (1) sparse partial pivoting, which requires a sparsity preserving column pre-ordering prior to numerical factorization, and (2) sparse Cholesky factorization, which requires a symmetric permutation of both the rows and columns of the matrix being factorized. These orderings are computed by COLAMD and SYMAMD, respectively. The ordering from COLAMD is also suitable for sparse QR factorization, and the factorization of matrices of the form ATA and AAT, such as those that arise in least-squares problems and interior point methods for linear programming problems. The two routines are available both in MATLAB and C-callable forms. They appear as built-in routines in MATLAB Version 6.0.

107 citations

Journal ArticleDOI
TL;DR: Comp compressed sensing has been widely applied to various areas such as signal processing, machine learning, and pattern recognition and strong incoherence conditions should be imposed.

107 citations

ReportDOI
01 Jul 2010
TL;DR: A recently proposed face recognition algorithm, where a sparse representation framework has been used to recover human identities from facial images that may be affected by illumination occlusion, and facial disguise is focused on.
Abstract: : `1-minimization refers to finding the minimum `1-norm solution to an underdetermined linear system b = Ax. It has recently received much attention, mainly motivated by the new compressive sensing theory that shows that under quite general conditions the minimum `1-norm solution is also the sparsest solution to the system of linear equations. Although the underlying problem is a linear program, conventional algorithms such as interior-point methods suffer from poor scalability for large-scale real world problems. A number of accelerated algorithms have been recently proposed that take advantage of the special structure of the `1-minimization problem. In this paper we provide a comprehensive review of five representative approaches, namely, Gradient Projection, Homotopy, Iterative Shrinkage-Thresholding, Proximal Gradient, and Augmented Lagrange Multiplier. The work is intended to fill in a gap in the existing literature to systematically benchmark the performance of these algorithms using a consistent experimental setting. In particular, the paper will focus on a recently proposed face recognition algorithm, where a sparse representation framework has been used to recover human identities from facial images that may be affected by illumination occlusion, and facial disguise. MATLAB implementations of the algorithms described in this paper have been made publicly available.

107 citations

Journal ArticleDOI
TL;DR: This paper proposes a fully unsupervised non-negative sparse coding based approach for abnormality event detection in crowded scenes, which is specifically tailored to cope with feature noisy and uncertainty.

107 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
93% related
Image segmentation
79.6K papers, 1.8M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
92% related
Deep learning
79.8K papers, 2.1M citations
90% related
Image processing
229.9K papers, 3.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022454
2021641
2020924
20191,208
20181,371