Topic

# Sparse grid

About: Sparse grid is a(n) research topic. Over the lifetime, 1013 publication(s) have been published within this topic receiving 20664 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: This work demonstrates algebraic convergence with respect to the total number of collocation points and quantifies the effect of the dimension of the problem (number of input random variables) in the final estimates, indicating for which problems the sparse grid stochastic collocation method is more efficient than Monte Carlo.

Abstract: This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite elements, corresponding to a deterministic set of points in the random input space. This naturally requires solving uncoupled deterministic problems as in the Monte Carlo method. If the number of random variables needed to describe the input data is moderately large, full tensor product spaces are computationally expensive to use due to the curse of dimensionality. In this case the sparse grid approach is still expected to be competitive with the classical Monte Carlo method. Therefore, it is of major practical relevance to understand in which situations the sparse grid stochastic collocation method is more efficient than Monte Carlo. This work provides error estimates for the fully discrete solution using $L^q$ norms and analyzes the computational efficiency of the proposed method. In particular, it demonstrates algebraic convergence with respect to the total number of collocation points and quantifies the effect of the dimension of the problem (number of input random variables) in the final estimates. The derived estimates are then used to compare the method with Monte Carlo, indicating for which problems the former is more efficient than the latter. Computational evidence complements the present theory and shows the effectiveness of the sparse grid stochastic collocation method compared to full tensor and Monte Carlo approaches.

1,160 citations

••

TL;DR: The usage of extended Gauss (Patterson) quadrature formulas as the one‐dimensional basis of the construction is suggested and their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, Clenshaw–Curtis and Gauss rules is shown.

Abstract: We present new and review existing algorithms for the numerical integration of multivariate functions defined over d-dimensional cubes using several variants of the sparse grid method first introduced by Smolyak [49] In this approach, multivariate quadrature formulas are constructed using combinations of tensor products of suitable one-dimensional formulas The computing cost is almost independent of the dimension of the problem if the function under consideration has bounded mixed derivatives We suggest the usage of extended Gauss (Patterson) quadrature formulas as the one‐dimensional basis of the construction and show their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, Clenshaw–Curtis and Gauss rules in several numerical experiments and applications For the computation of path integrals further improvements can be obtained by combining generalized Smolyak quadrature with the Brownian bridge construction

916 citations

••

TL;DR: The dimension–adaptive quadrature method is developed and presented, based on the sparse grid method, which tries to find important dimensions and adaptively refines in this respect guided by suitable error estimators, and leads to an approach which is based on generalized sparse grid index sets.

Abstract: We consider the numerical integration of multivariate functions defined over the unit hypercube. Here, we especially address the high-dimensional case, where in general the curse of dimension is encountered. Due to the concentration of measure phenomenon, such functions can often be well approximated by sums of lower-dimensional terms. The problem, however, is to find a good expansion given little knowledge of the integrand itself.The dimension-adaptive quadrature method which is developed and presented in this paper aims to find such an expansion automatically. It is based on the sparse grid method which has been shown to give good results for low- and moderate-dimensional problems. The dimension-adaptive quadrature method tries to find important dimensions and adaptively refines in this respect guided by suitable error estimators. This leads to an approach which is based on generalized sparse grid index sets. We propose efficient data structures for the storage and traversal of the index sets and discuss an efficient implementation of the algorithm.The performance of the method is illustrated by several numerical examples from computational physics and finance where dimension reduction is obtained from the Brownian bridge discretization of the underlying stochastic process.

542 citations

••

TL;DR: This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving partial differential equations with random coefficients and forcing terms (input data of the model) and provides a rigorous convergence analysis of the fully discrete problem.

Abstract: This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving partial differential equations with random coefficients and forcing terms (input data of the model). The method consists of a Galerkin approximation in the space variables and a collocation, in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis or Gaussian knots. Even in the presence of nonlinearities, the collocation approach leads to the solution of uncoupled deterministic problems, just as in the Monte Carlo method. This work includes a priori and a posteriori procedures to adapt the anisotropy of the sparse grids to each given problem. These procedures seem to be very effective for the problems under study. The proposed method combines the advantages of isotropic sparse collocation with those of anisotropic full tensor product collocation: the first approach is effective for problems depending on random variables which weigh approximately equally in the solution, while the benefits of the latter approach become apparent when solving highly anisotropic problems depending on a relatively small number of random variables, as in the case where input random variables are Karhunen-Loeve truncations of “smooth” random fields. This work also provides a rigorous convergence analysis of the fully discrete problem and demonstrates (sub)exponential convergence in the asymptotic regime and algebraic convergence in the preasymptotic regime, with respect to the total number of collocation points. It also shows that the anisotropic approximation breaks the curse of dimensionality for a wide set of problems. Numerical examples illustrate the theoretical results and are used to compare this approach with several others, including the standard Monte Carlo. In particular, for moderately large-dimensional problems, the sparse grid approach with a properly chosen anisotropy seems to be very efficient and superior to all examined methods.

515 citations

••

TL;DR: An adaptive sparse grid collocation strategy using piecewise multi-linear hierarchical basis functions and Hierarchical surplus is used as an error indicator to automatically detect the discontinuity region in the stochastic space and adaptively refine the collocation points in this region.

Abstract: In recent years, there has been a growing interest in analyzing and quantifying the effects of random inputs in the solution of ordinary/partial differential equations. To this end, the spectral stochastic finite element method (SSFEM) is the most popular method due to its fast convergence rate. Recently, the stochastic sparse grid collocation method has emerged as an attractive alternative to SSFEM. It approximates the solution in the stochastic space using Lagrange polynomial interpolation. The collocation method requires only repetitive calls to an existing deterministic solver, similar to the Monte Carlo method. However, both the SSFEM and current sparse grid collocation methods utilize global polynomials in the stochastic space. Thus when there are steep gradients or finite discontinuities in the stochastic space, these methods converge very slowly or even fail to converge. In this paper, we develop an adaptive sparse grid collocation strategy using piecewise multi-linear hierarchical basis functions. Hierarchical surplus is used as an error indicator to automatically detect the discontinuity region in the stochastic space and adaptively refine the collocation points in this region. Numerical examples, especially for problems related to long-term integration and stochastic discontinuity, are presented. Comparisons with Monte Carlo and multi-element based random domain decomposition methods are also given to show the efficiency and accuracy of the proposed method.

468 citations