scispace - formally typeset
Search or ask a question
Topic

Sparse grid

About: Sparse grid is a research topic. Over the lifetime, 1013 publications have been published within this topic receiving 20664 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The antisymmetric sparse grid discretization to the electronic Schrodinger equation is applied and costs, accuracy, convergence rates and scalability are compared with respect to the number of electrons present in the system.
Abstract: We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore we introduce an additional constraint which gives antisymmetric sparse grids which are suited to fermionic systems. We apply the antisymmetric sparse grid discretization to the electronic Schrodinger equation and compare costs, accuracy, convergence rates and scalability with respect to the number of electrons present in the system.

89 citations

Journal ArticleDOI
TL;DR: The theoretical foundation of a state-of-the-art uncertainty quantification method, the dimension-adaptive sparse grid interpolation (DASGI), is presented for introducing it into the applications of probabilistic power flow (PPF), specifically as discussed herein.
Abstract: In this paper, the authors firstly present the theoretical foundation of a state-of-the-art uncertainty quantification method, the dimension-adaptive sparse grid interpolation (DASGI), for introducing it into the applications of probabilistic power flow (PPF), specifically as discussed herein. It is well-known that numerous sources of uncertainty are being brought into the present-day electrical grid, by large-scale integration of renewable, thus volatile, generation, e.g., wind power, and by unprecedented load behaviors. In presence of these added uncertainties, it is imperative to change traditional deterministic power flow (DPF) calculation to take them into account in the routine operation and planning. However, the PPF analysis is still quite challenging due to two features of the uncertainty in modern power systems: high dimensionality and presence of stochastic interdependence. Both are traditionally addressed by the Monte Carlo simulation (MCS) at the cost of cumbersome computation; in this paper instead, they are tackled with the joint application of the DASGI and Copula theory (especially advantageous for constructing nonlinear dependence among various uncertainty sources), in order to accomplish the dependent high-dimensional PPF analysis in an accurate and faster manner. Based on the theory of DASGI, its combination with Copula and the DPF for the PPF is also introduced systematically in this work. Finally, the feasibility and the effectiveness of this methodology are validated by the test results of two standard IEEE test cases.

88 citations

Journal ArticleDOI
Jie Shen1, Haijun Yu
TL;DR: A fast algorithm for the discrete transform between the values at the sparse grid and the coefficients of expansion in a hierarchical basis is developed; and by using the aforementioned fast transform, two very efficient sparse spectral-Galerkin methods for a model elliptic equation are constructed.
Abstract: We develop in this paper some efficient algorithms which are essential to implementations of spectral methods on the sparse grid by Smolyak's construction based on a nested quadrature. More precisely, we develop a fast algorithm for the discrete transform between the values at the sparse grid and the coefficients of expansion in a hierarchical basis; and by using the aforementioned fast transform, we construct two very efficient sparse spectral-Galerkin methods for a model elliptic equation. In particular, the Chebyshev-Legendre-Galerkin method leads to a sparse matrix with a much lower number of nonzero elements than that of low-order sparse grid methods based on finite elements or wavelets, and can be efficiently solved by a suitable sparse solver. Ample numerical results are presented to demonstrate the efficiency and accuracy of our algorithms.

88 citations

Journal ArticleDOI
TL;DR: The results show that this P-NIROM has captured the quasi-totality of the details of the flow with CPU speedup of three orders of magnitude.

85 citations

Journal ArticleDOI
TL;DR: A strong tractability result of the order O(e−1) is given and this paper provides a practically usable hierarchical basis finite element method of this complexity O( e−1), i.e., without logarithmic terms growing exponentially in d, at least for the authors' sparse grid setting with its underlying smoothness requirements.

84 citations


Network Information
Related Topics (5)
Discretization
53K papers, 1M citations
89% related
Iterative method
48.8K papers, 1.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
83% related
Partial differential equation
70.8K papers, 1.6M citations
82% related
Differential equation
88K papers, 2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202242
202157
202040
201960
201872