Topic

# Sparse matrix

About: Sparse matrix is a(n) research topic. Over the lifetime, 13025 publication(s) have been published within this topic receiving 393290 citation(s). The topic is also known as: sparse array.

...read more

##### Papers

More filters

••

01 Oct 2014-

TL;DR: A new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods and produces a vector space with meaningful substructure.

...read more

Abstract: Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition.

...read more

23,307 citations

•

William H. Press

^{1}, Brian P. Flannery^{2}, Saul A. Teukolsky^{3}, William T. Vetterling^{4}•Institutions (4)31 Jan 1986-

Abstract: From the Publisher:
This is the revised and greatly expanded Second Edition of the hugely popular Numerical Recipes: The Art of Scientific Computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, this book is more than ever the most practical, comprehensive handbook of scientific computing available today. The book retains the informal, easy-to-read style that made the first edition so popular, with many new topics presented at the same accessible level. In addition, some sections of more advanced material have been introduced, set off in small type from the main body of the text. Numerical Recipes is an ideal textbook for scientists and engineers and an indispensable reference for anyone who works in scientific computing. Highlights of the new material include a new chapter on integral equations and inverse methods; multigrid methods for solving partial differential equations; improved random number routines; wavelet transforms; the statistical bootstrap method; a new chapter on "less-numerical" algorithms including compression coding and arbitrary precision arithmetic; band diagonal linear systems; linear algebra on sparse matrices; Cholesky and QR decomposition; calculation of numerical derivatives; Pade approximants, and rational Chebyshev approximation; new special functions; Monte Carlo integration in high-dimensional spaces; globally convergent methods for sets of nonlinear equations; an expanded chapter on fast Fourier methods; spectral analysis on unevenly sampled data; Savitzky-Golay smoothing filters; and two-dimensional Kolmogorov-Smirnoff tests. All this is in addition to material on such basic top

...read more

12,656 citations

••

TL;DR: A new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically.

...read more

Abstract: We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also known to converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically. Initial promising numerical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is shown to be faster than ISTA by several orders of magnitude.

...read more

9,684 citations

••

5,446 citations

••

TL;DR: This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank, and develops a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.

...read more

Abstract: This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative, produces a sequence of matrices $\{\boldsymbol{X}^k,\boldsymbol{Y}^k\}$, and at each step mainly performs a soft-thresholding operation on the singular values of the matrix $\boldsymbol{Y}^k$. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates $\{\boldsymbol{X}^k\}$ is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which $1,000\times1,000$ matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for $\ell_1$ minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.

...read more

4,762 citations

7