scispace - formally typeset
Search or ask a question
Topic

Spatial filter

About: Spatial filter is a research topic. Over the lifetime, 6170 publications have been published within this topic receiving 100451 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Noise in two-dimensional Fourier transform magnetic resonance images has been investigated using noise power spectra and measurements of standard deviation, finding the noise of unfiltered images is found to be white, and the choice of the temporal filter and sampling interval affects the noise in a manner predicted by sampling theory.
Abstract: Noise in two-dimensional Fourier transform magnetic resonance images has been investigated using noise power spectra and measurements of standard deviation. The measured effects of averaging, spatial filtering, temporal filtering, and sampling have been compared with theoretical calculations. The noise of unfiltered images is found to be white, as expected, and the choice of the temporal filter and sampling interval affects the noise in a manner predicted by sampling theory. The shapes of the imager's spatial frequency filters are extracted using noise power spectra.

208 citations

Journal ArticleDOI
TL;DR: The EMAP (Electromagnetic Array Profiling) method combats the inherent spatial high-pass characteristics of EM distortions by low-pass operations in data collection and processing as discussed by the authors, which proposes the continuous, in-field measurement of electric field dipoles to avoid spatial aliasing.
Abstract: The most revealing description of electromagnetic (EM) distortions due to near-surface inhomogeneities and topography is in terms of galvanic and inductive effects. In either case, the distorted electric and magnetic fields can be best visualized as a vectorial sum of primary and secondary fields. Secondary electric fields due to electric charge build-up in the galvanic case persist to the longest periods. In contrast, the secondary electric and magnetic fields due to inductive, vortex currents disappear at long periods. The static shift of magnetotelluric (MT) apparent resistivity sounding curves is a classic example of the galvanic effect. Methods to correct for unwanted distortions such as the static shift can be classified into six categories: use of invariant response parameters, curve shifting, statistical averaging, spatial filtering, use of distortion tensors, and computer modeling. Although invariant impedance calculations are simple to make, they cannot, in general, recover the undistorted impedance. Short period curve shifting is best done with auxiliary soundings such as time domain EM; however, this requires multiple surveys. The shifting of long period MT sounding branches is useful if a standard curve is known and can be matched. Statistical averaging of neighboring MT soundings that are conformal but static shifted has proven very effective at removing random distortions if adaquate data are available. The new EMAP (Electromagnetic Array Profiling) method combats the inherent spatial high pass characteristics of EM distortions by low pass operations in data collection and processing. EMAP proposes the continuous, in-field measurement of electric field dipoles to avoid spatial aliasing. Distortion tensor stripping of topographic distortions is possible since terrain is deterministic but stripping the effects of uncertain subsurface inhomogeneities may be misleading. A new decomposition of the MT impedance tensor under the assumption of surficial three-dimensional (3-D) galvanic effects imposed on a one- or two-dimensional (1-D and 2-D) regional setting promises a way to recover the regional structure. There is a continual need for 3-D computer modeling to test new methods and to calculate topographic and regional effects. Computer modeling has established the value of 2-D modeling of the data identified as transverse magnetic (TM) in some 3-D environments. Ideally, EM distortion correction requires continuous, or at least many, data and the application of more than one correction-modeling scheme.

198 citations

Journal ArticleDOI
TL;DR: It is shown that the problem of tracking a target having a fixed velocity can be cast into a general framework of three-dimensional filter theory and the design of these filters is presented, taking into account the target, clutter, and optical detection models.
Abstract: The standard approach to the detection of a stationary target immersed within an optically observed scene is to use integration to separate the target energy from the background clutter. When the target is nonstationary and moves with fixed velocity relative to the clutter, the procedure for integrating the target signal is no longer obvious. In this paper it is shown that the problem of tracking a target having a fixed velocity can be cast into a general framework of three-dimensional filter theory. From this point of view, the target detection problem reduces to the problem of finding optimal three-dimensional filters in the three-dimensional transform domain and processing the observed scene via this filtering. The design of these filters is presented, taking into account the target, clutter, and optical detection models. Performance is computed for a basic clutter model, showing the effective increase in detectability as a function of the target velocity. The three-dimensional transform approach is readily compatible with VLSI array processing technology.

198 citations

Journal ArticleDOI
TL;DR: The application of computer generated holograms to the interferometric testing of aspheric optical elements has been investigated, and it has been shown that they provide a convenient and practical method of producing an asPheric reference wavefront.
Abstract: The application of computer generated holograms to the interferometric testing of aspheric optical elements has been investigated, and it has been shown that they provide a convenient and practical method of producing an aspheric reference wavefront.

196 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the symmetry can be broken intentionally by controlling the phase of the central area of a spiral phase hologram, which is displayed at a computer controlled spatial light modulator, which produces an apparent shadow effect which can be rotated at video rate.
Abstract: Recently it has been demonstrated that spatial filtering of images in microscopy with a spiral phase element in a Fourier plane of the optical path results in a strong edge enhancement of object structures. In principle the operation is isotropic, i.e., all phase edges of a sample object are highlighted simultaneously, independent of their local direction. However, here we demonstrate that the symmetry can be broken intentionally by controlling the phase of the central area of a spiral phase hologram, which is displayed at a computer controlled spatial light modulator. This produces an apparent shadow effect which can be rotated at video rate. The resulting relieflike impression of the sample topography with a longitudinal resolution in the subwavelength regime is demonstrated by imaging a standard low contrast test sample consisting of a human cheek cell.

187 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
88% related
Resonator
76.5K papers, 1M citations
85% related
Image processing
229.9K papers, 3.5M citations
84% related
Filter (signal processing)
81.4K papers, 1M citations
83% related
Wave propagation
55K papers, 1.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202265
202181
2020144
2019180
2018179