scispace - formally typeset
Search or ask a question
Topic

Spatial filter

About: Spatial filter is a research topic. Over the lifetime, 6170 publications have been published within this topic receiving 100451 citations.


Papers
More filters
Journal ArticleDOI
Adolf W. Lohmann1, D. P. Paris1
TL;DR: This work shows that their filters, despite containing only amplitude values zero and one, can perform any data processing operation which could be performed by any complex filter.
Abstract: The setup used in many optical data processing schemes is a coherent optical image forming system. The most important lement in this setup is the complex spatial filter. It can perform a large variety of linear operations upon the object or input. In general, it is difficult to produce complex filters, since both amplitude transmission and phase delay may vary across the filter plane in a complicated manner. Our own filters which are very similar to binary holograms, consist of many little transparent rectangles on opaque background. They can easily be drawn on a large scale by a computer-guided plotter, and then photographically reduced in size. We show that our filters, despite containing only amplitude values zero and one, can perform any data processing operation which could be performed by any complex filter. After explaining the principle, we present three groups of applications. First, we describe new versions of some classical methods: schlieren observation and phase contrast. Next, we report on spatial which perform differential operations upon the object in order to enhance gradients or corners. Finally, we use our binary filters for signal detection.

121 citations

Patent
28 Dec 2000
TL;DR: In this article, volume holographic elements were made from Bragg diffractive gratings in photo-thermo-refractive (PTR) glass with absolute diffraction efficiency ranging from greater than approximately 50% up to greater than 93% and total losses below 5%.
Abstract: Novel volume holographic elements were made from Bragg diffractive gratings in photo-thermo-refractive (PTR) glass with absolute diffraction efficiency ranging from greater than approximately 50% up to greater than approximately 93% and total losses below 5%. Both transmitting and reflecting volume diffractive elements were done from PTR glasses because of high spatial resolution enabling recording spatial frequencies up to 10000 mm−1. The use of such diffractive elements as angular selector, spatial filter, attenuator, switcher, modulator, beam splitter, beam sampler, beam deflectors controlled by positioning of grating matrix, by a small-angle master deflector or by spectral scanning, selector of particular wavelengths (notch filter, add/drop element, spectral shape former (gain equalizer), spectral sensor (wavelength meter/wavelocker), angular sensor (pointing locker), Bragg spectrometer (spectral analyzer), transversal and longitudinal mode selector in laser resonator were described. Combinations of those elements in the same volume are available too.

121 citations

Journal ArticleDOI
TL;DR: The spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane before the wave- front sensor to act as a low-pass filter on the phase, significantly reducing the high-spatial-frequency content phase seen by the waveside sensor at moderate to high Strehl ratios.
Abstract: Adaptive optics (AO) systems take sampled measurements of the wave-front phase. Because in the general case the spatial-frequency content of the phase aberration is not band limited, aliasing will occur. This aliasing will cause increased residual error and increased scattered light in the point-spread function (PSF). The spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane before the wave-front sensor. This stop acts as a low-pass filter on the phase, significantly reducing the high-spatial-frequency content phase seen by the wave-front sensor at moderate to high Strehl ratios. We study the properties and performance of the SFWFS for open- and closed-loop correction of atmospheric turbulence, segmented-primary-mirror errors, and sensing with broadband light. In closed loop the filter reduces high-spatial-frequency phase power by a factor of 103 to 108. In a full AO-system simulation, this translates to a reduction by up to 625 times in the residual error power due to aliasing over a specific spatial frequency range. The final PSF (generated with apodization of the pupil) has up to a 100 times reduction in intensity out to λ/2d.

121 citations

Journal ArticleDOI
TL;DR: Kogelnik's coupled wave theory is applied to analyze the diffraction efficiency of a filter recorded on a high-efficiency phase medium such as dichromated gelatin.
Abstract: An analysis is made of the overall light efficiency in a coherent optical correlator. The results are applied to a matched filter and an inverse filter. Kogelnik's coupled wave theory is applied to analyze the diffraction efficiency of a filter recorded on a high-efficiency phase medium such as dichromated gelatin. Experimental results are presented for a matched filter and out-of-focus spatial filter, and the former is compared to the theory with good agreement.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a correction for streamwise Reynolds stress data acquired with insufficient spatial resolution is proposed for wall-bounded flows, based on the attached eddy hypothesis to account for spatial filtering effects at all wall-normal positions.
Abstract: A correction for streamwise Reynolds stress data acquired with insufficient spatial resolution is proposed for wall-bounded flows. The method is based on the attached eddy hypothesis to account for spatial filtering effects at all wall-normal positions. This analysis reveals that outside the near-wall region the spatial filtering effect scales inversely with the distance from the wall, in contrast to the commonly assumed scaling with the viscous length scale. The new formulation is shown to work very well for data taken over a wide range of Reynolds numbers and wire lengths.

119 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
88% related
Resonator
76.5K papers, 1M citations
85% related
Image processing
229.9K papers, 3.5M citations
84% related
Filter (signal processing)
81.4K papers, 1M citations
83% related
Wave propagation
55K papers, 1.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202265
202181
2020144
2019180
2018179