scispace - formally typeset
Search or ask a question
Topic

Spatial memory

About: Spatial memory is a research topic. Over the lifetime, 6374 publications have been published within this topic receiving 468800 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of the hippocampus is considered, which is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.
Abstract: This article considers the role of the hippocampus in memory function. A central thesis is that work with rats, monkeys, and humans--which has sometimes seemed to proceed independently in 3 separate literatures--is now largely in agreement about the function of the hippocampus and related structures. A biological perspective is presented, which proposes multiple memory systems with different functions and distinct anatomical organizations. The hippocampus (together with anatomically related structures) is essential for a specific kind of memory, here termed declarative memory (similar terms include explicit and relational). Declarative memory is contrasted with a heterogeneous collection of nondeclarative (implicit) memory abilities that do not require the hippocampus (skills and habits, simple conditioning, and the phenomenon of priming). The hippocampus is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.

5,283 citations

Journal ArticleDOI
TL;DR: The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes.
Abstract: The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes. Current views of working memory involve a central executive and two storage systems: the phonological loop and the visuospatial sketchpad. Although this basic model was first proposed 30 years ago, it has continued to develop and to stimulate research and debate. The model and the most recent results are reviewed in this article.

4,556 citations

Journal ArticleDOI
TL;DR: Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges.
Abstract: Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/ motion), language (written/spoken word recognition, spoken/ no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial-temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial-temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.

3,407 citations

Journal ArticleDOI
20 Sep 1991-Science
TL;DR: The medial temporal lobe memory system is needed to bind together the distributed storage sites in neocortex that represent a whole memory, but the role of this system is only temporary, as time passes after learning, memory stored in neoc cortex gradually becomes independent of medialporal lobe structures.
Abstract: Studies of human amnesia and studies of an animal model of human amnesia in the monkey have identified the anatomical components of the brain system for memory in the medial temporal lobe and have illuminated its function. This neural system consists of the hippocampus and adjacent, anatomically related cortex, including entorhinal, perirhinal, and parahippocampal cortices. These structures, presumably by virtue of their widespread and reciprocal connections with neocortex, are essential for establishing long-term memory for facts and events (declarative memory). The medial temporal lobe memory system is needed to bind together the distributed storage sites in neocortex that represent a whole memory. However, the role of this system is only temporary. As time passes after learning, memory stored in neocortex gradually becomes independent of medial temporal lobe structures.

3,096 citations

Journal ArticleDOI
TL;DR: This analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system is principally concerned with memory and operates with neocortex to establish and maintain long-term memory.
Abstract: The medial temporal lobe includes a system of anatomically related structures that are essential for declarative memory (conscious memory for facts and events). The system consists of the hippocampal region (CA fields, dentate gyrus, and subicular complex) and the adjacent perirhinal, entorhinal, and parahippocampal cortices. Here, we review findings from humans, monkeys, and rodents that illuminate the function of these structures. Our analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system (a) is principally concerned with memory, (b) operates with neocortex to establish and maintain long-term memory, and (c) ultimately, through a process of consolidation, becomes independent of long-term memory, though questions remain about the role of perirhinal and parahippocampal cortices in this process and about spatial memory in rodents. Data from neurophysiology, neuroimaging, and neuroanatomy point to a division of labor within the medial temporal lobe. However, the available data do not support simple dichotomies between the functions of the hippocampus and the adjacent medial temporal cortex, such as associative versus nonassociative memory, episodic versus semantic memory, and recollection versus familiarity.

2,742 citations


Network Information
Related Topics (5)
Working memory
26.5K papers, 1.6M citations
94% related
Prefrontal cortex
24K papers, 1.9M citations
93% related
Cognition
99.9K papers, 4.3M citations
90% related
Hippocampal formation
30.6K papers, 1.7M citations
90% related
Hippocampus
34.9K papers, 1.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022140
2021225
2020244
2019251
2018253