Struggling to understand research papers? Don’t panic! Get simple explanations to your questions. Learn more

scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt

Topic

Speaker diarisation

About: Speaker diarisation is a(n) research topic. Over the lifetime, 5306 publication(s) have been published within this topic receiving 112851 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: The major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs) are described.
Abstract: Reynolds, Douglas A., Quatieri, Thomas F., and Dunn, Robert B., Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing10(2000), 19Â?41.In this paper we describe the major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background model (UBM) for alternative speaker representation, and a form of Bayesian adaptation to derive speaker models from the UBM. The development and use of a handset detector and score normalization to greatly improve verification performance is also described and discussed. Finally, representative performance benchmarks and system behavior experiments on NIST SRE corpora are presented.

4,448 citations


Journal ArticleDOI
TL;DR: The individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for modeling speaker identity and is shown to outperform the other speaker modeling techniques on an identical 16 speaker telephone speech task.
Abstract: This paper introduces and motivates the use of Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for modeling speaker identity. The focus of this work is on applications which require high identification rates using short utterance from unconstrained conversational speech and robustness to degradations produced by transmission over a telephone channel. A complete experimental evaluation of the Gaussian mixture speaker model is conducted on a 49 speaker, conversational telephone speech database. The experiments examine algorithmic issues (initialization, variance limiting, model order selection), spectral variability robustness techniques, large population performance, and comparisons to other speaker modeling techniques (uni-modal Gaussian, VQ codebook, tied Gaussian mixture, and radial basis functions). The Gaussian mixture speaker model attains 96.8% identification accuracy using 5 second clean speech utterances and 80.8% accuracy using 15 second telephone speech utterances with a 49 speaker population and is shown to outperform the other speaker modeling techniques on an identical 16 speaker telephone speech task. >

3,029 citations


Journal ArticleDOI
01 Sep 1997
TL;DR: A tutorial on the design and development of automatic speaker-recognition systems is presented and a new automatic speakers recognition system is given that performs with 98.9% correct decalcification.
Abstract: A tutorial on the design and development of automatic speaker-recognition systems is presented. Automatic speaker recognition is the use of a machine to recognize a person from a spoken phrase. These systems can operate in two modes: to identify a particular person or to verify a person's claimed identity. Speech processing and the basic components of automatic speaker-recognition systems are shown and design tradeoffs are discussed. Then, a new automatic speaker-recognition system is given. This recognizer performs with 98.9% correct decalcification. Last, the performances of various systems are compared.

1,617 citations



Journal ArticleDOI
TL;DR: This work examines the idea of using the GMM supervector in a support vector machine (SVM) classifier and proposes two new SVM kernels based on distance metrics between GMM models that produce excellent classification accuracy in a NIST speaker recognition evaluation task.
Abstract: Gaussian mixture models (GMMs) have proven extremely successful for text-independent speaker recognition. The standard training method for GMM models is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. Recent methods in compensation for speaker and channel variability have proposed the idea of stacking the means of the GMM model to form a GMM mean supervector. We examine the idea of using the GMM supervector in a support vector machine (SVM) classifier. We propose two new SVM kernels based on distance metrics between GMM models. We show that these SVM kernels produce excellent classification accuracy in a NIST speaker recognition evaluation task.

1,016 citations


Network Information
Related Topics (5)
Feature vector

48.8K papers, 954.4K citations

81% related
Natural language

31.1K papers, 806.8K citations

80% related
Facial recognition system

38.7K papers, 883.4K citations

79% related
Feature extraction

111.8K papers, 2.1M citations

79% related
Recurrent neural network

29.2K papers, 890K citations

78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021130
2020152
2019101
201897
2017187