scispace - formally typeset
Topic

Speaker recognition

About: Speaker recognition is a(n) research topic. Over the lifetime, 14990 publication(s) have been published within this topic receiving 310061 citation(s).


Papers
More filters
Book
01 Jan 1993
TL;DR: This book presents a meta-modelling framework for speech recognition that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of manually modeling speech.
Abstract: 1. Fundamentals of Speech Recognition. 2. The Speech Signal: Production, Perception, and Acoustic-Phonetic Characterization. 3. Signal Processing and Analysis Methods for Speech Recognition. 4. Pattern Comparison Techniques. 5. Speech Recognition System Design and Implementation Issues. 6. Theory and Implementation of Hidden Markov Models. 7. Speech Recognition Based on Connected Word Models. 8. Large Vocabulary Continuous Speech Recognition. 9. Task-Oriented Applications of Automatic Speech Recognition.

8,351 citations

Journal ArticleDOI
TL;DR: The major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs) are described.
Abstract: Reynolds, Douglas A., Quatieri, Thomas F., and Dunn, Robert B., Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing10(2000), 19Â?41.In this paper we describe the major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background model (UBM) for alternative speaker representation, and a form of Bayesian adaptation to derive speaker models from the UBM. The development and use of a handset detector and score normalization to greatly improve verification performance is also described and discussed. Finally, representative performance benchmarks and system behavior experiments on NIST SRE corpora are presented.

4,448 citations

Journal ArticleDOI
TL;DR: A brief overview of the field of biometrics is given and some of its advantages, disadvantages, strengths, limitations, and related privacy concerns are summarized.
Abstract: A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor. Biometric recognition, or, simply, biometrics, refers to the automatic recognition of individuals based on their physiological and/or behavioral characteristics. By using biometrics, it is possible to confirm or establish an individual's identity based on "who she is", rather than by "what she possesses" (e.g., an ID card) or "what she remembers" (e.g., a password). We give a brief overview of the field of biometrics and summarize some of its advantages, disadvantages, strengths, limitations, and related privacy concerns.

4,384 citations

Journal ArticleDOI
TL;DR: An extension of the previous work which proposes a new speaker representation for speaker verification, a new low-dimensional speaker- and channel-dependent space is defined using a simple factor analysis, named the total variability space because it models both speaker and channel variabilities.
Abstract: This paper presents an extension of our previous work which proposes a new speaker representation for speaker verification. In this modeling, a new low-dimensional speaker- and channel-dependent space is defined using a simple factor analysis. This space is named the total variability space because it models both speaker and channel variabilities. Two speaker verification systems are proposed which use this new representation. The first system is a support vector machine-based system that uses the cosine kernel to estimate the similarity between the input data. The second system directly uses the cosine similarity as the final decision score. We tested three channel compensation techniques in the total variability space, which are within-class covariance normalization (WCCN), linear discriminate analysis (LDA), and nuisance attribute projection (NAP). We found that the best results are obtained when LDA is followed by WCCN. We achieved an equal error rate (EER) of 1.12% and MinDCF of 0.0094 using the cosine distance scoring on the male English trials of the core condition of the NIST 2008 Speaker Recognition Evaluation dataset. We also obtained 4% absolute EER improvement for both-gender trials on the 10 s-10 s condition compared to the classical joint factor analysis scoring.

3,060 citations


Network Information
Related Topics (5)
Feature vector
48.8K papers, 954.4K citations
83% related
Recurrent neural network
29.2K papers, 890K citations
82% related
Feature extraction
111.8K papers, 2.1M citations
81% related
Signal processing
73.4K papers, 983.5K citations
81% related
Decoding methods
65.7K papers, 900K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20227
2021270
2020474
2019484
2018420
2017535